STONES DISTRIBUTION

COURSE WORK #09

Author: prof. Yevhenii Borodavka

PROBLEM STATEMENT

You have N stones (1<=N<=20) with weights $w_1, w_2, ..., w_N$ (1<= w_i <=100000). You need to distribute stones between two stacks in the way to get the smallest weight difference.

Input. The first string contains the number N. The second string contains N numbers — the stone weights w_i , divided by spaces.

Output. The single number — the smallest weight difference of the two stacks.

PROBLEM STATEMENT

Example

Input:

5

5 8 13 27 14

Output: 3

$$(27+8) - (13+14+5) = 35 - 32 = 3$$

THE PROBLEM SOLVING

We can use a simple recursive approach to solve this problem, or dynamic programming approaches with memoization or tabulation.

The recursive approach has a time complexity of $O(2^N)$ and both dynamic programming approaches have a time complexity of $O(N^*Sum)$.

The possible maximum sum of all stones is N*100000 = 2000000.

Thus, for the recursive approach, the time complexity will be $O(2^{20}) = O(1 \ 0.48 \ 5.76)$, and for the dynamic programming approaches $O(20^*2 \ 0.00 \ 0.00) = O(40 \ 0.00 \ 0.00)$. The choice is obvious.

THANK YOU