LT
i

& MAXIMUM PRIZE

} COURSE WORK #01

I

Avuthor: prof. Yevhenii Borodavka

1&

PROBLEM STATEMENT

You have received a money prize of N USD (10<=N<=999999). You
can increase or decrease the prize by doing exactly K (0<=K<=10°)
digit permutations in this number (one permutation is swapping any of
the two digits in the number). Find the maximum prize after K
permutations.

Input. A single string with two numbers N and K divided by spaces.

Output. The maximum prize after K permutations.
Example. N=123, K=2

Input: 123 2
Qutput: 312

(

LN
\

HEAP'S ALGORITHM

Heap's algorithm generates all possible permutations of n objects. It was
first proposed by B. R. Heap in 1963. The algorithm minimizes movement:
it generates each permutation from the previous one by interchanging a
single pair of elements; the other n-2 elements are not disturbed.

Example:
Given an integer array: [1,2,3,4]

From Probability, we know there would be 4! permutations (results are
order sensitive). If you expend the permutation in a tree form, it would
look like as follow:

1

(

K HEAP'S ALGORITHM

1324 3124 2314 3214

The above tree form denotes there is a recursion required to enumerate
all the permutations.

\ HEAP'S ALGORITHM

permute([1,2,3]) + 4

//‘\\\

/ —

permute([1,2]) + 3 permute([1,3]) + 2 permute([2,3]) + 1
A I~

> / \\ / / \‘\

/

[1,2] [2.1] [1,3] [3.1] [2,3] [3.2]

permute([1,2,4])+ 3

\D HEAP S ALGORITHM

The algorithm follows the decrease-and-conquer strategy:

. Isolate the end element and permute the K-1 elements.
2. Pick the next unique element and swap with the end element.

3. Repeat step 1 and 2 until all the elements became the end element
once!

Alright, we notice the conditional swap might have something to do with
picking the next unique element.

\ HEAP'S ALGORITHM
)

Let’s see the partial answer of the given input [1,2,3,4] as the (
permutations ending with 4.

Partial permutations of [1,2.3,4]

permute([1,2,3]) + 4

permute([1,2]) + 3 permute([1,3])+ 2 permute([2,3])+ 1

Y
%

[1.2] [21] [1.3] [3.1] [2.3] [3.2]

HEAP S ALGORITHM
A\ (

Heap’s Algorithm systematically picks the next unique element in the
descending order! e.g., permute([1,2,3]) will pick 3 > 2 > 1.

permute([1,2,3]) + 4

Tt S0

permute([1,2]) + 3 permute([1,3]) + 2 permute([2,3]) + 1

"\
/ /,/ M
/,/ / N ~
7~ / N / ~

[1.2] [21] [1.3] (3.1] (23] [3.2]

l HEAP'S ALGORITHM

For permute([1,2]): For permute([1,2,3]):

permute [1,2]

Note that the 3 and 1 are swapped at
the end of iteration when the search
range is odd.

I\

HEAP S ALGORITHM g

For permute([1,2,3,4]):

Note that the elements shift one position to
the left at the end of iteration when the
search range is even!

\K HEAP'S ALGORITHM
)

permute [1 2] permute [1,2,3]

eventually

1

&~

2

eventually

A

HEAP S ALGORITHM

From there, we find the repeating pattern as:

. The 1st element and last element are swapped at the end of iteration
when the search range is odd. (The array is flipped in horizontal)

2. The elements shift one position to the left at the end of iteration when
the search range is even.

Now we know the key of the conditional swap to the search range.
Actually, the conditional swap is the systematic way to pick the next
unique element to isolate.

LN
\

THE PROBLEM SOLVING

Actually, the Heap’s algorithm in pure implementation do not allow us to
solve the maximum prize problem. We need to find not all permutations,
but the case where the prize will be maximum. So, we need to check all
permutation with swap count 1, then with swap count 2 and so on to swap
count K. But, does it really needed to make K swapping?

Let’s consider an example with 5 digit number.

1

(

N 1

THE PROBLEM SOLVING i

18 1|1|2]|7

Tz s |79 e 12 S
l217899178298712

21118172118 |7 2|28 |1 |7 2|28 7|12

As you can see, the swap count for reaching the maximum number is D-1,
where D is the digit count in number N. That means we do not need to do

more than D-1 swaps in case KK > D-1. The possible count of swaps on the
number is D*(D-1)/2.

\D THE PROBLEM SOLVING

The algorithm to solve this problem.

. Find the possible maximum of the prize. It needs D*(D-1)/2 swaps.
2. Set the maximum swap S count to D-1 if K > D-1 or to K otherwise.

3. Create permutation recursive function with depth of S or until
maximum prize has been reached. Keep current maximum prize and
current recursive depth (swap count).

4. If K < D-1 then the answer is the current maximum prize. Otherwise,
we need to fix the current maximum prize according to the K value.
Think wisely about how to do it.

| 1%\

[2

