LINE DRAWING ALGORITHMS

* Digital Differential Analyzer (DDA)

* Bresenham's line algorithm

DDA (Digital Differential Analyzer) is a line drawing algorithm used in computer
graphics to generate a line segment between two specified endpoints. It is a
simple and efficient algorithm that plots the line by using the incremental
difference between the x-coordinates and y-coordinates of the two endpoints.

The steps involved in the DDA line generation algorithm are:

1.
2.

ORI

Input the two endpoints of the line segment, (x1,y1) and (x2,y2).

Calculate the difference between the x-coordinates and y-coordinates of the
endpoints as dx and dy respectively.

Calculate the maximum between dx and dy and set it as a step.

Calculate the increments: Xi=dx/step and Yi=dy/step.

Set the initial point of the line as (x1,y1).

Loop through the step, incrementing x by Xi and y by Yi.

Plot the pixel at the calculated (x,y) coordinate.

Repeat steps 6 and 7 until the endpoint (x2,y2) is reached.

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0

1

2

3

4

5

6

7

8

Nl MO IN| | O

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=3/4

X=x1=0
Y=y1=0
x=round(X)=round(0)
y=round(Y)=round(0)

0
0

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0[1[2[3[4[5]|6]|7]8 dx=(8-0)=8
dy=(6-0)=6
N\ step=max(dx,dy)=max(8,6)=8

Xi=dx/step=8/8=1

Yi=dy/step=6/8=0.75

X=X+Xi=(0+1)=1

Y=Y+Yi=(0+0.75)=0.75

x=round(X)=round(1)=1
y=round(Y)=round(0.75)=1

Nl MO IN| | O

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0

1

2

3

4

5

6

7

8

N

Nl MO IN| | O

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

X=X+Xi=(1+1)=2
Y=Y+Yi=(0.75+0.75)=1.5
x=round(X)=round(2)=2
y=round(Y)=round(1.5)=2

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

4 |51 6|78 dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #3

X=X+Xi=(2+1)=3
Y=Y+Yi=(1.5+0.75)=2.25
x=round(X)=round(3)=3
y=round(Y)=round(2.25)=2

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #4
X=X+Xi=(3+1)=4
Y=Y+Yi=(2.25+0.75)
x=round(X)=round(4)=4
y=round(Y)=round(3)=3

3

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #5

X=X+Xi=(4+1)=5
Y=Y+Yi=(3+0.75)=3.75
x=round(X)=round(5)=5
y=round(Y)=round(3.75)=4

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #6
X=X+Xi=(5+1)=6
Y=Y+Yi=(3.75+0.75)=4.5
x=round(X)=round(6)=6
y=round(Y)=round(4.5)=5

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #7

X=X+Xi=(6+1)=7
Y=Y+Yi=(4.5+0.75)=5.25
x=round(X)=round(7)=7
y=round(Y)=round(5.25)=5

DIGITAL DIFFERENTIAL ANALYZER

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
step=max(dx,dy)=max(8,6)=8
Xi=dx/step=8/8=1
Yi=dy/step=6/8=0.75

LOOP #8
X=X+Xi=(7+1)=8
Y=Y+Yi=(5.25+0.75)=6
x=round(X)=round(8)=8
y=round(Y)=round(6)=

Bresenham's algorithm — a fundamental method in Computer Graphics — is a
clever way of approximating a continuous straight line with discrete pixels,
ensuring that the line appears straight and smooth on a pixel-based display. Was
invented by Jack Bresenham in 1962 and published in 1965.

Bresenham's algorithm has been extended to produce circles, ellipses, cubic and
quadratic Bezier curves, as well as native anti-aliased versions of those.

The algorithm uses the slope (k) of the original line along with a value called the
"decision parameter” (dp) in tandem to help us choose the pixels that create the
most precise straight-line approximation between these two points.

The "decision parameter" guides the algorithm's incremental decisions about
whether to move horizontally or diagonally and which pixel to color next.

As the algorithm progresses, we'll continuously update the decision parameter
based on whether it was positive, negative, or zero in the previous iteration. This
constant refinement helps us minimize the deviation from the original line.

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0

1

2

3

4

5

6

7

8

Nl MO IN| | O

dx=(8-0)=8

dy=(6-0)=6
k=dy/dx=6/8=3/4
dpo=-1/2

if(dpi>=0) then dpi=dpi-1
dpi=dpi-1-2dx

As you see, the calculations need
floating-point arithmetic. So
Bresenham multiplies all variables
by 2dx and gets only integer
arithmetic.

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.
0|1[2|3|4|5|6|7|8 dx=(8-0)=8

dy=(6-0)=6
k=(dy/dx)*2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8

if(dpi>=0) then dpi=dpi-2dx

X=x1=0

Y=y1=0

Nl MO IN| | O

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0

1

2

3

4

5

6

7

8

\\

Nl MO IN| | O

dx=(8-0)=8

dy=(6-0)=6
k=(dy/dx)*2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

dp1=dpot+k=(-8+12)=4
dp1>=0 then
X=(X+1)=(0+1)=1
Y=(Y+1)=(0+1)=1
dpi1=dp1-2dx=(4-2*8)=-12

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

0

1

2

3

4

5

6

7

8

N

Nl MO IN| | O

dx=(8-0)=8

dy=(6-0)=6
k=(dy/dx)*2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

dp2=dp1+k=(-12+12)=0
dp2>=0 then
X=(X+1)=(1+1)=2
Y=(Y+1)=(1+1)=2
dp2=dp2-2dx=(0-2*8)=-16

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
k=(dy/dx)*2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #3
dps=dp2t+k=(-16+12)=-4
dps<0 then
X=(X+1)=(2+1)=
Y=(Y+0)=(2+0)
dps=dps

3
2

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6
k=(dy/dx)*2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #4
dps=dp3+k=(-4+12)=8
dps>=0 then
X=(X+1)=(3+1)=4
Y=(Y+1)=(2+1)=3
dps=dps-2dx=(8-2*8)=-8

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6

k=(dy/dx) *2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #5
dps=dpa+k=(-8+12)=4
dps>=0 then
X=(X+1)=(4+1)=5
Y=(Y+1)=(3+1)=4
dps=dps-2dx=(4-2*8)=-12

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6

k=(dy/dx) *2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #6
dps=dps+k=(-12+12)=0
dps>=0 then
X=(X+1)=(5+1)=6
Y=(Y+1)=(4+1)=5
dps=dps-2dx=(0-2*8)=-16

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6

k=(dy/dx) *2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #7
dp7=dpet+k=(-16+12)=-4
dp7<0 then
X=(X+1)=(6+1)=7
Y=(Y+0)=(5+0)=5
dp7=dp7

BRESENHAM'S LINE ALGORITHM

An example. We have a line (0,0) - (8,6). Need to find pixels for the line rendering.

dx=(8-0)=8

dy=(6-0)=6

k=(dy/dx) *2dx=2dy=12
dpo=(-1/2)* 2dx=-dx=-8
if(dpi>=0) then dpi=dpi-2dx

LOOP #8
dps=dp7+k=(-4+12)=8
dps>=0 then
X=(X+1)=(7+1)=8
Y=(Y+1)=(5+1)=6
dps=dps-2dx=(8-2*8)=-8

	Line drawing algorithms
	Digital Differential Analyzer
	Digital Differential Analyzer (2)
	Digital Differential Analyzer (3)
	Digital Differential Analyzer (4)
	Digital Differential Analyzer (5)
	Digital Differential Analyzer (6)
	Digital Differential Analyzer (7)
	Digital Differential Analyzer (8)
	Digital Differential Analyzer (9)
	Digital Differential Analyzer (10)
	Bresenham's line algorithm
	Bresenham's line algorithm (2)
	Bresenham's line algorithm (3)
	Bresenham's line algorithm (4)
	Bresenham's line algorithm (5)
	Bresenham's line algorithm (6)
	Bresenham's line algorithm (7)
	Bresenham's line algorithm (8)
	Bresenham's line algorithm (9)
	Bresenham's line algorithm (10)
	Bresenham's line algorithm (11)
	Slide 23

