
GREEDY ALGORITHM
• DESCRIPTION OF THE GREEDY ALGORITHM
• WHAT IS A GREEDY ALGORITHM?
• STEPS FOR CREATING A GREEDY ALGORITHM
• ADVANTAGES AND DISADVANTAGES
• LIMITATIONS OF GREEDY ALGORITHM
• APPLICATIONS OF GREEDY ALGORITHM
• PRACTICE: STONES DISTRIBUTION PROBLEM

Author: prof. Yevhenii Borodavka

DESCRIPTION OF THE GREEDY ALGORITHM
A Greedy algorithm is an approach to solving a problem that
selects the most appropriate option based on the current
situation. This algorithm ignores the fact that the current best
result may not bring about the overall optimal result. Even if
the initial decision was incorrect, the algorithm never reverses
it.
This simple, intuitive algorithm can be applied to solve any
optimization problem which requires the maximum or
minimum optimum result. The best thing about this algorithm
is that it is easy to understand and implement.

WHAT IS A GREEDY ALGORITHM?
The runtime complexity associated with a greedy solution is
pretty reasonable. However, you can implement a greedy
solution only if the problem statement follows two properties
mentioned below:
•Greedy Choice Property: Choosing the best option at each

phase can lead to a global (overall) optimal solution.
•Optimal Substructure: If an optimal solution to the complete

problem contains the optimal solutions to the subproblems,
the problem has an optimal substructure.

STEPS FOR CREATING A GREEDY ALGORITHM
By following the steps given below, you will be able to
formulate a greedy solution for the given problem statement:
• Step 1: In a given problem, find the best substructure or

subproblem.
• Step 2: Determine what the solution will include (e.g., largest

sum, shortest path).
• Step 3: Create an iterative process for going over all

subproblems and creating an optimum solution.

ADVANTAGES AND DISADVANTAGES
Advantages of Greedy Approach:
• The algorithm is easier to describe.
• This algorithm can perform better than other algorithms

(but, not in all cases).
Drawback of Greedy Approach:
• As mentioned earlier, the greedy algorithm doesn't always

produce the optimal solution. This is the major disadvantage
of the algorithm.

ADVANTAGES AND DISADVANTAGES
For example, suppose we want to find the longest path in the
graph below from root to leaf. Let's use the greedy algorithm
here. 1. Let's start with the root node

20. The weight of the right child
is 3 and the weight of the left
child is 2.
2. Our problem is to find the
largest path. And, the optimal
solution at the moment is 3. So,
the greedy algorithm will
choose 3.
3. Finally the weight of an only
child of 3 is 1. This gives us our
final result 20 + 3 + 1 = 24.

ADVANTAGES AND DISADVANTAGES
However, it is not the optimal solution. There is another path
that carries more weight (20 + 2 + 10 = 32) as shown in the
image below.

Therefore, greedy
algorithms do not always
give an optimal/feasible
solution.

LIMITATIONS OF GREEDY ALGORITHM
Factors listed below are the limitations of a greedy algorithm:
1. The greedy algorithm makes judgments based on the

information at each iteration without considering the
broader problem; hence it does not produce the best
answer for every problem.

2. The problematic part for a greedy algorithm is analyzing its
accuracy. Even with the proper solution, it is difficult to
demonstrate why it is accurate.

3. Optimization problems (Dijkstra’s Algorithm) with negative
graph edges cannot be solved using a greedy algorithm.

APPLICATIONS OF GREEDY ALGORITHM
Following are few applications of the greedy algorithm:
•Used for Constructing Minimum Spanning Trees: Prim’s and

Kruskal’s Algorithms used to construct minimum spanning
trees are greedy algorithms.
•Used to Implement Huffman Encoding: A greedy algorithm

is utilized to build a Huffman tree that compresses a given
image, spreadsheet, or video into a lossless compressed file.
•Used to Solve Optimization Problems: Graph - Map Coloring,

Graph - Vertex Cover, Knapsack Problem, Job Scheduling
Problem, and activity selection problem are solved using a
greedy algorithmic paradigm.

PRACTICE: STONES DISTRIBUTION PROBLEM
Problem. You have N stones (10<=N<=100) and you need to
distribute them into P stacks (P<=N) in the way to achieve the
maximum result of the multiplication stones count in each
stack.
Example. If N=10 and P=3 we can distribute stones in this
way: 10=1+1+8. In this case, the multiplication result will be
1*1*8=8. But the optimal distribution will be 10=3+3+4. In this
case, the multiplication result will be 3*3*4=36.
Task. Create a program using C/C++/Python to solve this
problem.
Input. A single string with two numbers N and P divided by
space.
Output. The multiplication result of the stones counts in each
stack.

PRACTICE: STONES DISTRIBUTION PROBLEM
Try to use the greedy approach to solve this problem.
The maximal result will be obtained in case of regular stones
distribution. So, we can formulate greedy algorithm approach
to get the maximal result.
• Step 1: the best subproblem is to distribute one stone

between P stacks.
• Step 2: solution include P stacks with maximal amount of

stones.
• Step 3: we need to add one stone per iteration to the stack

with smallest amount of stones. Thus we have to do N
iterations.

Let’s visualize each step of the algorithm.

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 1. The first stone distribution between P=3 stacks.

Stack 1

1

Stack 2

0

Stack 3

0

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 2. The second stone distribution between P=3 stacks.

Stack 1

1

Stack 2

1

Stack 3

0

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 3. The third stone distribution between P=3 stacks.

Stack 1

1

Stack 2

1

Stack 3

1

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 4. The fourth stone distribution between P=3 stacks.

Stack 1

2

Stack 2

1

Stack 3

1

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 5. The fifth stone distribution between P=3 stacks.

Stack 1

2

Stack 2

2

Stack 3

1

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 6. The sixth stone distribution between P=3 stacks.

Stack 1

2

Stack 2

2

Stack 3

2

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 7. The seventh stone distribution between P=3 stacks.

Stack 1

3

Stack 2

2

Stack 3

2

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 8. The eighth stone distribution between P=3 stacks.

Stack 1

3

Stack 2

3

Stack 3

2

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 9. The ninth stone distribution between P=3 stacks.

Stack 1

3

Stack 2

3

Stack 3

3

PRACTICE: STONES DISTRIBUTION PROBLEM
Step 10. The tenth stone distribution between P=3 stacks.

Stack 1

4

Stack 2

3

Stack 3

3

PRACTICE: STONES DISTRIBUTION PROBLEM
After N=10 iterations we get the final result of the stones
distribution. Now we only need to multiply the amount of
stones in each stack to get the final answer to the problem.
Of course, this problem has a much smarter and faster
solution. So, I hope, you can find it and implement it.

PRACTICE: STONES DISTRIBUTION PROBLEM
Code example:
#include <iostream>

int N, P, A;

int main()
{
 cin >> P >> N;

 // Your code here

 cout << A;

 return 0;
}

THANK
YOU!

	Greedy algorithm
	Description of The greedy algorithm
	What Is A Greedy Algorithm?
	Steps for Creating a Greedy Algorithm
	Advantages and disadvantages
	Advantages and disadvantages (2)
	Advantages and disadvantages (3)
	Limitations of Greedy Algorithm
	Applications of Greedy Algorithm
	Practice: Stones distribution problem
	Practice: Stones distribution problem (2)
	Practice: Stones distribution problem (3)
	Practice: Stones distribution problem (4)
	Practice: Stones distribution problem (5)
	Practice: Stones distribution problem (6)
	Practice: Stones distribution problem (7)
	Practice: Stones distribution problem (8)
	Practice: Stones distribution problem (9)
	Practice: Stones distribution problem (10)
	Practice: Stones distribution problem (11)
	Practice: Stones distribution problem (12)
	Practice: Stones distribution problem (13)
	Practice: Stones distribution problem (14)
	Thank you!

