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> SPANNING TREE

.~ A spanning tree is a sub-graph of an undirected connected

o graph, which includes all the vertices of the graph with a
minimum possible number of edges. If a vertex is missed,
then it is not a spanning tree.

\ The edges may or may not have weights assigned to them.

The total number of spanning trees with n vertices that can be
created from a complete graph is equal to n-2,

/~ If we have n=4, the maximum number of possible spanning
|/ / trees is equal to 442=16. Thus, 16 spanning trees can be
| formed from a complete graph with 4 vertices.
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> EXAMPLE OF A SPANNING TREE
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/.~ Let'sunderstand the spanning tree with examples below.

)

Let the original graph be:

Some of the possible spanning trees that

y . . can be created from the above graph are:
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> MINIMUM SPANNING TREE

N\ O A

/.~ A minimum spanning tree is a spanning tree in which the sum
S of the weight of the edges is as minimum as possible.

The initial graph is:
The possible spanning trees from the above

) . .graph are:




\© MINIMUM SPANNING TREE

\,\ - The minimum spanning tree from the above spanning trees *
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PRIM'S ALGORITHM

Prim's algorithm is a minimum spanning tree algorithm that ©
takes a graph as input and finds the subset of the edges of

that graph which:
* form a tree that includes every vertex

* has the minimum sum of weights among all the trees that
can be formed from the graph
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> HOW PRIM'S ALGORITHM WORKS

.~ It falls under a class of algorithms called greedy algorithms

P

that find the local optimum in the hopes of finding a global
optimum.

We start from one vertex and keep adding edges with the
lowest weight until we reach our goal.

The steps for implementing Prim's algorithm are as follows:

1. Initialize the minimum spanning tree with a vertex chosen
/~  atrandom.

A 2. Find all the edges that connect the tree to new vertices,
find the minimum and add it to the tree.

Je
QL Keen reneatina <ten 2 1intil we aet 3 mMinimMiiM <hannina

\>;>






\

O

]

> EXAMPLE OF PRIM'S ALGORITHM
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I > PRIM'S ALGORITHM PSEUDOCODE

\ O )
1LY T=0;
o U={1}
while (U 5V)
let (u, v) be the lowest cost edge suchthatu&€ Uandv &V -
U,
) T=Tu{u,v)
U=UuU {v}
/f:\ The time complexity of Prim's algorithm is O(E log V). Hﬁ
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KRUSKAL'S ALGORITHM

7N\

/.~ Kruskal's algorithm is a minimum spanning tree algorithm

7N\

that takes a graph as input and finds the subset of the edges
of that graph which:

* form a tree that includes every vertex

* has the minimum sum of weights among all the trees that
can be formed from the graph
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.~ It falls under a class of algorithms called greedy algorithms

P

HOW KRUSKAL'S ALGORITHM WORKS

that find the local optimum in the hopes of finding a global
optimum.

We start from the edges with the lowest weight and keep
adding edges until we reach our goal.

The steps for implementing Kruskal's algorithm are as follows:
1. Sort all the edges from low weight to high.

2. Take the edge with the lowest weight and add it to the

spanning tree. If adding the edge created a cycle, then
reject this edge.
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> KRUSKAL'S ALGORITHM COMPLEXITY

'L~ Any minimum spanning tree algorithm revolves around
& checking if adding an edge creates a loop or not.

The most common way to find this out is an algorithm called
Union Find. The Union-Find algorithm divides the vertices into

\ clusters and allows us to check if two vertices belong to the
same cluster or not and hence decide whether adding an
edge creates a cycle.

‘ /: The time complexity of Kruskal's Algorithm is: O(E log E).
/.
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© PRACTICE: ISLANDS CONNECTION PROBLEM

Problem. You have N islands (1<=N<=100) that you need to connect with
tunnels. In addition, you need to keep environmental pollution as low as
possible. The pollution is calculated by formula: P=L2E, where L - tunnel
length, E - pollution coefficient.

N

7N

7~

Task. Create a program using C/C++/Python to solve this problem.

Input. Four strings: the first one with single number N; the second one
with N numbers - the X coordinates (0<=X<=10¢) of the islands divided
® by spaces; the third one with N numbers - the Y coordinates (0<=Y<=10¢)
‘ » of the islands divided by spaces; the last one with single number E ©
/" (0<=E<=1) - pollution coefficient.
\

/’* Output. The accumulated environmental pollution is rounded to the | /
| Slosestinteger.

N\
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© PRACTICE: ISLANDS CONNECTION PROBLEM

N\ O : . y S
.~ Example. There are N=6 islands and pollution coefficient

A E=0.005
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© PRACTICE: ISLANDS CONNECTION PROBLEM

\,\ ~ Step 1. Calculate squares length for all edges.

(3-0)? +(2-0)2=13

(1-0 + (2-02 =5

(1-0 + (4-22=5

(4-0)? +(3-2)2=17

(3-0)? + (4-2)>=13

(3-1)2+(0-02=4

(3-1)? + (4-0)2= 20

(4-3)> +(3-0)2=10

(0-0)? + (4-0)2=16

(1-1)2 + (4-0)2=16

(4-1)2 + (3-1)2 =13

(3-1)? + (4-0)2= 20

0 1 2 3 4
0
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(4-1)2+(4-3)>’=10

1 1 1 1 1
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(3-12+ (442 =4
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..~ Step 2. Sort lengths in ascending order.

\\© PRACTICE: ISLANDS CONNECTION PROBLEM

(4372 + (4-3)2=2

(3-172+(0-02=4

(3-1)2 + (4-4) = 4

(1-02 + (2-02 =5

(1-0 + (4-22=5

(4-3)> +(3-0)2=10

(4-172 +(4-32=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-1)2+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(402 + (3-2)2= 17

1 1 1 1 1 1 1 1 1 1 1 1 1 1
EAN (0] EAN (@)} (9] (@) N Ul ul EAN w (@) W (e)]

(3-1)2 + (4-0)? = 20
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© PRACTICE: ISLANDS CONNECTION PROBLEM
\,\ : Step 3. Select the first edge from the list and add it to MST.

(4-37 + (4-3)2 =2

(3-172+(0-02=4

(3-1)2 + (4-4) = 4

(1-0)2 + (2-0)2=5

(1-0)? + (4-2)2=5

(4-37 + (3-02= 10

(4-1)2+(4-3)>=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-172+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(40 + (3-2)2 =17

1 1 1 1 1 1 1 1 1 1 1 1 1 1
EAN (0] EAN (@)} (9] (@) N Ul ul EAN w (@) W (e)]

(3-1)2 + (4-0)2= 20

'O

J



\

© PRACTICE: ISLANDS CONNECTION PROBLEM
\,\ : Step 4. Select the next edge from the list and add it to MST.

(4-37 + (4-3)2 =2

(3-172+(0-02=4

(3-1)2 + (4-4) = 4

(1-0)2 + (2-0)2=5

(1-0)? + (4-2)2=5

(4-37 + (3-02= 10

(4-1)2+(4-3)>=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-172+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(40 + (3-2)2 =17

1 1 1 1 1 1 1 1 1 1 1 1 1 1
EAN (0] EAN (@)} (9] (@) N Ul ul EAN w (@) w (e)]

(3-1)2 + (4-0)2= 20
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© PRACTICE: ISLANDS CONNECTION PROBLEM
\,\ : Step 5. Select the next edge from the list and add it to MST.

(4-37 + (4-3)2 =2

(3-172+(0-02=4

(3-1)2 + (4-4) = 4

(1-0)2 + (2-0)2=5

(1-0)? + (4-2)2=5

(4-37 + (3-02= 10

(4-1)2+(4-3)>=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-172+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(40 + (3-2)2 =17

1 1 1 1 1 1 1 1 1 1 1 1 1 1
EAN (0] EAN (@)} (9] (@) N Ul ul EAN w (@) w (e)]

(3-1)2 + (4-0)2= 20
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© PRACTICE: ISLANDS CONNECTION PROBLEM
\,\ : Step 6. Select the next edge from the list and add it to MST.

(4-37 + (4-3)2 =2

(3-172+(0-02=4

(3-1)2 + (4-42 =4

(1-02 + (2-02 =5

(1-0)? + (4-2)2=5

(4-3)> +(3-0)2=10

(4-172 +(4-32=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-172+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(402 + (3-2)2= 17

o|l1|2]| 3] 4 ©
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© PRACTICE: ISLANDS CONNECTION PROBLEM
\,\ : Step 7. Select the next edge from the list and add it to MST.

(4-37 + (4-3)2 =2

(3-172+(0-02=4

(3-1)2 + (4-42 =4

(1-02 + (2-02 =5

(1-0)? + (4-2)2=5

(4-3)> +(3-0)2=10

(4-172 +(4-32=10

(3-0)? +(2-0)2=13

(3-0)2 + (4-2)2=13

(4-172+(3-1)2=13

(0-0)? + (4-0)2=16

(1-1)2 + (4-02 = 16

(402 + (3-2)2= 17

0| 1|23 4 ©
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4 -5
e -6
‘ -4
\ '®)
-5
4

(3-1)2 + (4-0)? = 20
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\k“ PRACTICE: ISLANDS CONNECTION PROBLEM
\I O

/L% Code example:

0 #include <iostream>
#define MAX 1000

N, A, X[MAX], Y[MAX]:
E;

main ()

cin >> N;
for( '
for(
'®) cin >> E;

/*your code here*/
O cout << A;

return 0;
}
@)
e

i++) cin >> X[i];
i++) cin >> Y[i];

1 O; i < N;
1 O; i < N;

®)

/
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