Jlekuisn 0. Po3mupeni MeXaHIi3MH
CUHXPOHi3auil B MOBIi Java

Tema 1. baokyBaHHS 3a HoIoMororo JidmibHuKa. Kitac Semaphore.

Tema 2. Metoau kimacy ReentrantLock mis kepyBaHHS B3a€EMHHM BHKJIIOUCHHSM, OJOKYBaHHSIM
Ta COPaBEJIUBICTIO JOCTYMY MOTOKIB.

Tema 3. Meromu xiacy ReentrantReadWriteLock Ta ix 3acrocyBaHHsS B 0araTOIIOTOKOBUX
cepmicax 1 Kellax 3 IHTEHCUBHUMH OIepallisiMyi YATAHHS.

Semaphore - Cemagop KOHTPOIIOE IOCTYI IO
3arajlbHOTO0 PECypCy 3a JOINOMOIOI JIIYMIbHUKA,
MaKCUMaJIbHE 3HAYCHHS SKOIO 3aJa€ThCS IIpH
1H1IT1a/113a11i B KOHCTPYKTOPI.

PoOota cemadopa MoKHA IIPEACTABUTH aITOPUTMOM
IloTik 3anuTye y cemadopa JI0CTYII 10 PECYpCY.
Cemadop 1mepeBipse JIIYMIBHUK, SKIIO HOTO
3HaueHHs Ounpmie 3a 0 — gocTtym g0 pecypey
HaJa€ThCSA MOTOKY 1 JIYMJILHUX 3MEHITY€EThCS Ha 1.
Konu mnoTtoky Ouiblie HE IOTPIOEH AOCTYH J0
CIILUILHOTO PECypcCy, TOAl MOTIK BMBLIbHSE J103BLI,
[0 OpPU3BOAUTL A0 30UIBLICHHSA JIIYMIbHUKA
cemadopa.

setting up
semaphore with
intial value of
count

Threads tries to acquire permit(sem.acquire)

thread blocked, waiting for next permit

count>0 No

Yes

.

Semaphore
provide access
to shared
resource to the
thread

Thread release the permit(sem.release)

|

count++

[Ipuknan, Hexall MAaEMO «ITOBUIBHUI» peCcypc, SIKU MOKe 00pOOISATH 103BOISIE TUIBKA OJJHOYACHUX 3aIIUTH.
Application

50 threads Service

Y ¥ ¥

B TakoMy BUIaIKy oOprasizyemMo JoCTyn 3a jaonoMoror Cemadopy 3 TpbOMma JI03BOJIAMU — MICHS
HAJlaHHSl JIO3BOJIy TOTOKY, JIUMJIBHUK 3MEHIINYE€ThCA HAa 1 TakuM 4YMHOM [Jis1 4-r0 MOTOKYy YMOBa
TYUIbHUK OinbIne 3a 0 He BUKOHYETHCS 1 4-11 TTOTIK OJIOKYETHCA.

Application

acquire() access()

[
>

counter=2

Y

acquire() access()

counter=1

acquire() access()
counter=0 |H+——1 ™ Senvice

Y

50 threads

Y

blocked()

if counter <0

Y

[Ticys, TOro SIK OJIUH 3 MOTOKIB MOBEPTAE JOCTYII, TIUYWIbHUK ceMadopy 30UIbIIYETHCA 1 «3a0JIOKOBAaHUM TTOTIK»

OTPUMYE JTO3B1J. SR

acquire()

Y

acquire()
50 threads

Y

unblocked()

counter=1

if counter=0

released()

access()

access()

Peanizauia semaphore.acquire();semaphore.release();

T
>

Senvice

publicvoid acquire() throws InterruptedException

{
synchronized(this)

{
while (permits==0)
{wait();

}

permits--;

}

}

public voidrelease() {
synchronized(this)

{
permits++;
notify();

}

}

MeTtoau knacy Semaphore

public Semaphore(int permits)

KonctpykTop kiacy, ctBoproe exzeMinuisap kiaacy Cemadop , 13 3a/1aHO0 KIIBKICTIO JO3BOJIB 1
HaJIAIITYBaHHSIM «HEYECHO1» CIIPABEIUBOCTI.

public Semaphore(int permits,
boolean fair)

KonctpykTop kiacy, ctBoproe exzeMiuisap kinacy Cemadop , 13 3a/1aHO0 KIIBKICTIO JO3BOJIB 1
HaJIAIITYBaHHIM «4Y€CHOI» CIIPaBEIJIMBOCTI.

public void acquire() throws
InterruptedException

IToTik, sIKMi1 BUKJIMKAE METO oTpuMye 103B1I BiJl Cemadopy Ha poOOTy 3 peCypcoM, SIKIIO
JI03B1J1 HE OTPUMAHO, TO MOTIK OJIOKYETHCS, TIOKU PECYPC HE CTaHE BUIBHUM a00 MOTIK HE
OyJie mepepBaHo.

public void acquireUninterruptibly()

Ha Bimminy Bix acquire(), merox acquireUninterruptibly() e Buxumae InterruptedException,
AKIIO TOTIK OyJe epepBaHo Mij] 4yac CIpoOr OTpUMaHHS J03BoJy. BiH irHOpye nepepruBaHHs
Ta MPOJAOBXKY€E HAMAraTucs OTPUMATH J103BLIL.

Ile o3Hauvae, 1110 HABITH SIKIIIO CTAaH IEPEPUBAHHS IOTOKY BCTAHOBJICHO, METOJ] HE pearye,
npunuHsIoun 1iro 3 InterruptedException. 3aMicTh OTO BiH OYHMIILY€E CTAH IEPEPUBAHHS
IIPY BXO/I1 Ta BIJTHOBJIIOE MOTO ITiCJIsl MOBEPHEHHS, SKIIO BiH OYB BCTAaHOBJICHUM.

[leit MeTo/1 KOPUCHUI y CUTYAIisIX, KO KPUTUYHO BAXKJIMBO JJISl 3aBJaHHSI OTPUMATH JO3B1I
nepes] MPOJIOBKEHHSIM, 1 3aBJJaHHS HE MOXKe OyTH MEpeadacHO 3aBEPIICHO a00 MPOMYIIEHO
yepes nepepuBaHHs. BiH rapantye, 10 NOTIK BPEIITI OTPUMAE JO3BLI EPE] TUM K
pyxarucs gajii, KpiM BUMAAKIB, KOJIM MOTIK BOUTO ad0 chUCTeMa BUMKHEHA.

public boolean tryAcquire(long timeout,
TimeUnit unit) throws
InterruptedException

[ToTik, ikl BUKIIMKa€e MeTO/1 OTpuMye J103B1UI Biag Cemadopy Ha poOOTy 3 pecypcom, Ipu
IILOMY OYiKy€ Ha JOCTYII MPOTITOM BU3HAUYCHOTO Yacy. BUHATKOBa cUTyaIlisi MOXIJIMBA, SKIIO
[ToTik mepepBano

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

MeTtoau knacy Semaphore

public void release()

[ToTik, AKU BUKJIMKAE METOJ TIOBEPTAE pecypc, MuuiabHUK Cemadopa 30UTbITyeThCS

public int availablePermits()

KinbKkicTh BUIBHUX «I03BOJIIB» Ha pOOOTY 3 PECypCOM

public int drainPermits()

IToTik, SIKMM BUKIIMKAE METOJ OBEPTAE PECYPC, OTPUMYE BCI IOCTYIIHI «JI03BOIN
Cemadopy

protected void reducePermits(int reductio

n)

Buknuk Metony 3MeHIIye KIJIbKICTh I03BOJIIB HA BKa3aHe 3HaueHHs. Lleit meTon Moxe OyTH
KOPUCHUM Y MIJAKJIACaX, K1 BUKOPUCTOBYIOTh ceMadopu JJis BiJICTEKEHHS peCypciB, sKi
CTalOTh HEJIOCTYITHUMH.

protected Collection<Thread> getQueue
dThreads()

IToBepTae KOJEKIIi10 MOTOKIB, SIKi OUIKYIOTh B uep31 Cemadopy Ha OTpUMAHHS «TO3BIILTIBY.

public final boolean hasQueuedThreads()

IToeprae TRUE, sikiio B uep3i o4ikyrTh HOTOKH Ha JIOCTYII 10 pecypcy. Lleit meton
MPU3HAUYCHUN B OCHOBHOMY JIJIsl BAKOPUCTAHHSI B MOHITOPUHTY CTaHy CUCTEMHU.

public boolean isFair()

IToeprae TRUE, sixmio Cemadop cTBOpEHO 3 HAAIITYBAHHSIM «U€CHOT» CIPaBEAJIUBOCTI.

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Mpuknag acquire();

public static class PrinterQueue {
private final Semaphore semaphore;
public PrinterQueue() {

// true means the semaphore will guarantee first-come, first-
served granting of permits

int n_permits=1;

this.semaphore = new Semaphore(n_permits, true);

}

public void printJob(Object document) {
try {
semaphore.acquire();
System.out.printin(Thread.currentThread().getName() + ":
Printer is printing ");
Thread.sleep(1000);
} catch (InterruptedException e) {

e.printStackTrace();
} finally {

semaphore.release();
System.out.printin(Thread.currentThread().getName() +
": Printing done, released the printer");

public static void main(String[] args) {
final PrinterQueue printerQueue = new PrinterQueue();
int thread_count = 3;
Thread[] threads = new Thread[thread_count];
for (inti=0;i<thread_count; i++) {
threads[i] = new Thread(new Runnable() {
@Override
public void run() {
System.out.printIin(Thread.currentThread().getName() +
": Going to print a document");
printerQueue.printlJob(new Object());

}
}, "Thread " +i);

}

for (inti=0;i<thread_count; i++) {
threads[i].start();
}

for (inti=0;i<thread_count; i++) {
try {
threadsJi].join();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}
}

Mpuxnang (semaphore.tryAcquire(2, TimeUnit. SECONDS))

ublic void printJobTryAcquire(Object document) {
try {
/I Attempt to acquire the semaphore within 2 seconds
if (semaphore.tryAcquire(2, TimeUnit.SECONDS)) {

try {

System.out.printin(Thread.currentThread().getName() + ™
Printer is printing ");

Thread.sleep(1000);

} finally {
semaphore.release();

System.out.printin(Thread.currentThread().getName() +
": Printing done, released the printer™);
}

}else {
System.out.printin(Thread.currentThread().getName()
+
": Could not acquire the printer after waiting 2
seconds, performing other tasks");

performOtherTasks();
}
} catch (InterruptedException €) {
Thread.currentThread().interrupt();

¥
¥

semaphore.acquireUninterruptibly() —3ynuHsemo notik!!!!

public void printlobacquireUninterruptibly(Object document) {
System.out.printin(Thread.currentThread().getName() + " attempting
to print a document.");
semaphore.acquireUninterruptibly();

try {
System.out.printin(Thread.currentThread().getName() + ": Printer

is printing ");
Thread.sleep(1000);

} catch (InterruptedException e) {
Thread.currentThread().interrupt(); // Set the interrupt flag again
System.out.printin(Thread.currentThread().getName() + " was

interrupted during printing.");

} finally {
semaphore.release();
System.out.printIn(Thread.currentThread().getName() + " has

finished printing and released the printer.");

}
}

for (inti=0; i < thread_count; i++) {
threads|i].start();
if (i==1){
try {
// Wait for thread to start and
possibly acquire the semaphore
Thread.sleep(100);
threadsl[i].interrupt();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}
}

Lock — immepgbetic i3 lock framework, mo Hamae rHydkuil muxig 10 oOMEXEHHS JOCTYIy JIO peCcypciB/OJIOKIB Y
nopiBHsIHHI 3 Synchronized.

MeTtoau intepdeiicy Lock, peanizoBani B kiaci ReentrantLock

ReentrantLock - 3a0e3nedye MOXIIMBICTH B3a€EMHOTO BHKJIFOUCHHS IOTOKIB 3 TAaKOK CaMOI0 0a30BOIO MOBEIIHKOIO Ta
CEMaHTHUKOIO, 110 1 OJIOKYBaHHS 3a JOMOMOIOI0 MOHITOpa 00’€KTa, JOCTYIl J0 SIKOIO 3IMCHIOETHCA 3a JOMOMOIOIO
CUHXPOHI30BaHUX METOAIB Ta ONEPATOPIB, ajie 3 PO3MUPEHUMH MOKIMBOCTSIMU.

[Ipuragaemo, kirodoBe ¢iioBo Synchronized 3a0e3neuyoTh CHHXPOHHHH JOCTYII 10 CITUIBHOTO PeCypCy Ul Oararbox
OTOKIB MeTogaMH kiaacy Monitor. Kimac Monitor € mamaakom Object, Tomy Oynb-skuii 00'€KT, BABHAYSHUH CIIOBOM
synchronized moxe Bukimmkaru metogau — Wait(); notify(); notify All().

MeTtoau peanizoBaHi B kjiaci ReentrantLock

v void lock() - 3amutye i oTpuMye OGIOKYBaHHS KPUTHYHOI CEKIlii KOAy (ITOYa-TOK SIKOI BiJ3HAYCHO JAHMM METOIOM) IIOTOKOM, B
skomy 3 oO'ekta ReentrantLock sukmukaerbes meton lock(). fxmio OmoxyBaHHS HE ITOCTYIHE, TO TOTOYHWN IOTIK Oyse
NPU3YNUHEHUN A0 THX Mip, NOKUA OJOKYBaHHs Oyzie 3BUIbHEHE 1HITUMHU NTOTOKaAMU;

v void lockinterruptibly() - 3amutye i orpumye GIOKYBaHHS KPUTHYHOI CEKIii KOAy IOTOKOM, B sIKoMy 3 o0'ekta ReentrantLock
BUKJIMKAETHCA TAHUW METO/I, TIOKU MTOTOYHUM MOTIK HE Oy/ie mepepBaHUil IepeprUBaHHAM a00 OJIOKYBaHHS HE OyJie 3BUIbHEHE. SKII0
ONOKyBaHHA HE JOCTYMHE, TO TOTOYHHMHN MOTIK Oyae MPU3YNUHEHHWH 0 THUX Mip, MOKU OJIOKYBaHHS Oyae 3BUIBHEHE 1HIIUMH
TIOTOKaMH a0o0 IMOKH SKUHCH IHITUH MOTIK He BUKJIMYe MeTo interrupt() 3 moToYHOTO MOTOKY;

v" boolean tryLock() - meTon 3amutye i orpuMye GrokyBanHs Tak camo, sk i l0ck(), ame skmo GIOKyBaHHS HENOCTYITHE, IOTIK, B
skomy 3 00'ekta ReentrantLOCK BHWKIMKa€eThCSA MaHWKW METOMA, B CTaH CHY HE IEPEBOAMTHCH, a MPOAOBKYE TPAIFOBATH (METO
noBeprae true nmpu orpuManHi OokyBaHHs 1 false sikio GokyBaHHS He- JOCTYITHE);

v" boolean tryLock(long time, TimeUnit unit) -ananoriunmii tryLock(), aixe B pa3i HemoCTymHOCTI GIOKYBaHHS IOTIK, B SKOMY 3
o0'ekta. ReentrantLoCK BHKJIMKa€eThCS TaHWA METOJ, 3aCHHAE HA 3a3HAYCHHH SK MapaMmeTp 4dac (IPOTATOM IThOTO Yacy BiH 3MOXKE
3aXOMUTH OJIOKYBAaHHS, SIKE 3BUIBHUTHCA).

v" void unlock() - exunuii MeTOx 3BIILHEHHS OJIOKYBaHHS KPUTUYHOI CEKIliT TOTOKOM, B sKoMy 3 00'exTa ReentrantLock BukinkaeTnes
JAHUW METOJ.

v newCondition() — Hagae moTokaM crocid KOOPAUHYBAaTH CBOKO TisUIBHICTH HA OCHOBI IEBHUX YMOB, JO3BOJISIOYM OLIbII CKIIaHi
mabJIOHU CUHXPOHI3aIlii, OKPIM MPOCTOr0 OTPUMAHHS Ta 3HITTS OJIOKYBaHHSI.

ReentrantLock miarpumye cnpaseorusuii (fair) abo necnpaseonusuii (non-fair) oocmyn no xputnunux cekuii. [Ipu cupaBemMBoMy
OJIOKyBaHH1 JOTPUMYETHCS TOPSIOK 3BUIBHEHHS MOTOKIB, 3a mpaBwioMm FIFO. Ilpu HecmpaBemiuBoMy po30J0KYyBaHHI MOPSJIOK
3BUJILHEHHS MOTOKIB HE TAPAHTYETHCS, TaKe PO30JIOKYBaHHS MPALIO€E MIBUIIIE. 32 3aMOBYYBaHHSIM, BUKOPUCTOBYETHCS HECITPABEIJIMBE
PO30JI0KYyBaHHSI.

IIpuknao, 6 sikomy memoou synchronized ta lock.lock() 3abe3neuyroTh 0HAKOBY ITOBEIIHKY

public class CommonObject {
private static int count =0;
public void incCount() {
synchronized (this) {
for (inti=0;1<10; i++)
{

System.out.print(count++ + " ");

}
¥
System.out.printin();
¥

static int getCount(){
return count;

¥

import java.util.concurrent.locks.ReentrantLock;

public class CommonObjectLock {
private static int count =0;
private static ReentrantLock lock = new ReentrantLock();
public void incCount() {

lock.lock();

try{

for (inti=0;i<10; i++) {
System.out.print(count++ + " ");

}

} finally {
lock.unlock();

¥
System.out.printin();

}

static int getCount(){
return count;
}
}

MyThread threadl = new
MyThread(obj);

MyThread thread2 = new
MyThread(obj);

MyThread thread3 = new
MyThread(obj);

MyThread thread4 = new
MyThread(obj);

MyThread thread5 = new
MyThread(obj);

threadl.start();

thread2.start();

thread3.start();

thread4.start();

thread5.start();

lock.tryLock(),lock.tryLock (timeout, unit)

CUHXpOHI130BaH1 OJIOKU HE MalOTh aHAJIOTY
tryLock(). Komu mmoTik 2 miaxoauTs 10
KPUTUYHOI CEKIIii, TOCTYII JI0 SIKOi
3a0JI0KOBaHUH MTOTOKOM 1, To OTIK 1 — yekae
1oro 3aja4yl NpUIUHEHI.

inTepdeiic Lock Bkarouae MmeTomu:

1. tryLock() — mepeBipsie MOKIIMBICTB
OTPUMATH JOCTYII JIO CIUJIBHOIO pecypcy i
noeprae TRUE/FALSE. Konu moTik_ 2
orpumye FALSE B pe3ynbrari BUKIUKY
tryLock() - moTik Mo)ke BUKOHYBaTH 1HIIT
3aa4l.

2. tryLock(timeout, unit)— uekae 3amaHuii
IIPOMDKOK 4acy, Hiciis [[bOro, IepeBipsie
MOKJIMBICTh OTPUMATH JOCTYII JI0
CIIUTBHOTO PECYpCyY

Ilpuknao —saxi pesynomu 6 konconi nicas lock.tryLock(),lock.tryLock (timeout, unit)

public class MyThread extends Thread {
private CommonObject comObjectValue;
private ReentrantLock relc;
public MyThread (CommonObject objectValue,
ReentrantLock rl){
this.comObjectValue=objectValue;
this.relc=rl;

¥

public void run() {
boolean lockAcquired = false;
try {
lockAcquired = relc.tryLock()||
relc.tryLock(1000, TimeUnit. MICROSECONDS);
if (lockAcquired) {
System.out.printIn(this.getName() + " locked
resource™);
comObjectValue.incCount();
relc.unlock();
System.out.printIn(this.getName() + " releasing
lock(outer lock)™);
}
else
System.out.printIn(this.getName() + "
waiting");
} catch (InterruptedException e) {
throw new RuntimeException(e);

¥

public class CommonObjectLock {
private static int count =0;

public void incCount() {
for (inti=0;i<10; i++) {
System.out.print(count++ +

[ll);
}
}
static int getCount(){
return count;

}
}

ReentrantLock rel = new
ReentrantLock();
MyThread threadl = new
MyThread(obj,rel);
MyThread thread2 = new
MyThread(obj,rel);
MyThread thread3 = new
MyThread(obj,rel);
MyThread thread4 = new
MyThread(obj,rel);
MyThread thread5 = new
MyThread(obj,rel);
thread1l.start();
thread?2.start();
thread3.start();
thread4.start();
thread5.start();

Condition

Condition newCondition() - moBeprae 0o0’ekT peamzaiito iHTepdeiica Condition,
e T T noB’si3annii 3 00’exktom ReentrantLock. Bukmmk wmeroma void await() o0’exra
awaltNanos(long): long Condition 3acTaBUTh MOTOYHUHN TOTIK OYiKYBaTH JI0 BUKIUKY B HHOMY METOIIB VOId
await(long, TimeUnit): boolean signal() (void signalAll()).

e Taxum unHOM, 00'exT THIY «Condition» migTpumye i cami metoau (wait(), notify(),
signall): voie notify(All)) saxi peanizoBani B ki1aci MoHiTOp.

Ilpu uvomy 3ab6e3neuye 000amKo6i MOMHCIUBOCHMI. KIIbKA YMO8 HA 0J10KYGAHHA.
O00UH eK3eMNJAP 0J10KYBAHHA MOMHCE MAMU KLIbKA NO8 AZAHUX eK3EMNIAPIE YyMOBU,
KOJICeH 3 AKUX RPeOCMABIAE IHULY YMOBY, HA AKY MOXNCYHb UeKaAmu NOMOKU.

await(): void

signalAll(): void

Meton awaitNanos(long) - mnoTrounmii MOTIK YTpUMY€E
OOKyBaHHSI MPOTITOM MAKCHMAJIBHOIO 4Yacy, SIKHHA 3aJjaHO B
HAaHOCEKyHaX. Peanizaiiss mMae BHU3HAUUTH, YU YTPUMYE 1€
MOTIK OJIOKYBaHHSI Ha OCHOBI YMOBH
awaitNanos(unit.toNanos(time)) > 0 1 sgkmo Hi, TOmiI 5K
pearyBati - Sk mpaBWIJIO, CTBOPIOETHCS BUHATOK (HANPUKIIA],
IllegalMonitorStateException), 1 peamzaiis ITOBHHHA
3aJJOKYMEHTYBaTH 11eil (DaKT.

Mpuknad - aki peaynsmamu e KoHconi nicna sukauky ReentrantLock i3 cnpaseonusum (fair) avo necnpaseonusuii
(non-fair) oocmyn?

public class Manager { public Ct'ajss/'anagelﬂock{ |
. _ . private Integer value = null;
private Integer value = nu“' private static ReentrantLock lock = new ReentrantLock();
public synchronized int getVa|ue(){ private static ReentrantLock /ock = new ReentrantLock(true);

private Condition cond = ock.newCondition();

System.out.printIn("getValue"); oublic int getvalue() |

if (value ==nu||) { System.out.printin("getValue");
tr try ¢
y { . boolean b = lock.tryLock();
Wa|t(50), if (b) {
while (value == null) {
} catch (InterruptedException e) { trycind aweait():
System.out.printin("Thread interrupted while waiting."); System.out.printin("waiting");
} } catch (InterruptedException e) {
} throw new RuntimeException(e);
} } }
// System.out.printin("Returned value "+ value); lock.unlock();
. } catch (lllegalMonitorStateException ex) {
;eturn Value’ System.out.printin(ex.getMessage());
}
public synchronized void setValue (int value)

{ return value;
2
System.out.printIn("Inserted value "+ value);
. — . public void setValue(int value) {
this.value = value; try {

notify(); lock.lock();
} // System.out.printin("Inserted value "+ value);
this.value = value;
cond.signalAll();

}Hinally {
lock.unlock();

|3

Ilpuxnao - condition.awaitNanos(remainingNanos) ons onepayii’ 3 mampuysmu, 6y0emo 3MIHIO8AMU YAC OYIKY8AHHS ONs. ONepayii 3

mampuysimu

public void setMatrix(int[][] matrix) {
this.matrix = matrix;
for (int i=0; i<1000000000; i++) {}
matrixReady = true;

}

public int[][] getMatrixWithTimeout(long timeoutNanos) throws
InterruptedException {
lock.lock();

try {
long remainingNanos = timeoutNanos;

while (!matrixReady && remainingNanos > 0) {
long startTime = System.nanoTime();
remainingNanos = condition.awaitNanos(remainingNanos);
long elapsedTime = System.nanoTime() - startTime;
remainingNanos -= elapsedTime;
}
if (ImatrixReady) {
throw new InterruptedException("Timeout occurred while waiting for
matrix");
}
return matrix;
} finally {
lock.unlock();
}
}

private static void testlongmatrixoperation() {
MatrixOperationExample example = new MatrixOperationExample();
int[][] matrixData = {
{1, 2, 3},
{4,5, 6},
{7, 8, 9}
|7
Thread setThread = new Thread(() -> {
example.setMatrix(matrixData);

};
Thread getThread = new Thread(() -> {

try {
waittime=1000000000;
int[][] retrievedMatrix = example.getMatrixWithTimeout(waittime);
System.out.printIn("Retrieved matrix:");
example.printMatrix(retrievedMatrix);

} catch (InterruptedException e) {
e.printStackTrace();

}

N;
setThread.start();

getThread.start();

try {
setThread.join();

getThread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

Interrupt(), Isinterrupted() — AK 3ynMHUTN BUKOHAHHSA 3a4a4i NOTOKOM, SIKWO BUKAKKATK Thread.Interrupt()?

Mpuknaod 1. He 3miHIO€ setMatrix
public void setMatrix(int[][] matrix) {
this.matrix = matrix;
for (int i=0; i<1000000000; i++) {}
matrixReady = true;
}
Mpuknad2. 3amiHemo setMatrix
public void setMatrixisinterrupted(int[][] matrix) throws InterruptedException {
this.matrix = matrix;

for (int i=0; i<1000000000; i++) {
if (Thread.currentThread().isInterrupted()){
System.out.printin("stop task");
matrixReady = false;
throw new InterruptedException("Timeout occurred while waiting for matrix");

}
}

matrixReady = true;

}

MatrixOperationExample example = new MatrixOperationExample();
int[][] matrixData = {
{1, 2, 3},
{4,5, 6},
{7, 8,9}
2
Thread setThread = new Thread(() -> {
example.setMatrix(matrixData);

N;

Thread getThread = new Thread(() -> {
try {
int[][] retrievedMatrix = example.getMatrixWithTimeout(100);
System.out.printIn("Retrieved matrix:");
example.printMatrix(retrievedMatrix);
} catch (InterruptedException e) {
e.printStackTrace();
}
1;

setThread.start();
getThread.start();
setThread.interrupt();
try {
setThread.join();
getThread.join();
} catch (InterruptedException e) {
e.printStackTrace();

}

[onoBHa ocobameicTb ReentrantLock — 1e 6imoxyBaTy moTiK OLIBIN HixK OAMH pa3 («IIOBICHTH 3aMKu» Reentrant

locking)

public class MyReentrantLock {
public final ReentrantLock lock = new ReentrantLock();
public void getLock()

{

try{
lock.lock();

lock.lock();
System.out.printin(Thread.currentThread().getName()+lock.isLocked());
System.out.printIn();

System.out.printin(lock.getHoldCount());

finally{
lock.unlock();
System.out.printin(Thread.currentThread().getName()+ lock.isLocked());
System.out.printin();
System.out.printin(lock.getHoldCount());
lock.unlock();
System.out.printin(Thread.currentThread().getName()+ lock.isLocked());
System.out.printIn();
System.out.printIn(lock.getHoldCount());

v' Tlepmmii Buknuk lock.lock(): TTotik orpumye O10KyBaHHS, SIKIIO

BOHO JOCTyIHE. SKIIO OMOKYBaHHS BXE YTPUMYETHCA 1HIITUM
MMOTOKOM, BUKJIMKAIOUMH MOTIK OJIOKY€ETHCS, TOKH OJIOKYBaHHSI HE
ctane goctynHuM. Ilicis Toro, sik 6J0KyBaHHS OTPUMAHO, BOHO
MO3HAYAETHCS K yTPUMYBaHE TOTOYHUM MTOTOKOM.

[Momanemri Bukuku lock.lock(): Skmio To# camuii moTik 3HOBY
sukiukae lock.lock() mst Toro camoro GiioKyBaHHSI, SIKE BIH yXKe
YTPUMY€, KUIbKICTh yTPUMYBaHb OJOKYBaHHSI 301JIbIIYETHCS.
brokyBaHHS 3aMUIIAEThCAd yTPUMYBAaHUM IOTOKOM, 1 HACTYTMHI
Bukinku lock.unlock() moBuuHI OyTH 3pO0NIEHI CTIIBKH K pa3iB,
ckimpku lock.lock(), mo6 3usTH OnokyBanHs. lleit MexaHi3M
T03BOJISIE TIOBTOPHE BXOKEHHS, KOJU TIOTIK MOXE OTpPUMATH
OJIOKYBaHHS, SIKUM BIH YK€ yTpUMYy€, 0€3 OJTOKyBaHHSI.

[ToBTOpHE OJIOKYBaHHSI OCOOJIMBO KOPUCHE B CHUTYyallisiX, KOJU
MetrogaM abo OJokaM KOIy MOXE 3HAJO0OUTHUCS OTpUMAaTHU
OJIOKyBaHHSI PEKyPCHUBHO, HANPHUKIAQA, KOJIU METOA BUKIIHKAE
IHIIMH METOJI, SIKUM TakoX moTpedye OokyBaHHs. Lle qomomarae
CIIPOCTUTH JIOTIKY OJIOKyBaHHSI Ta MOXE IOKpAaIUTH
YUTAa0ENBbHICTh KOAY Ta 3pY4HICTh 0OcCiIyroByBaHHs. OHaK
BAXJIMBO TIepekoHaTucs, mo koxkeH Bukiauk lock.lock()
cniBcTaBiIseThesa 3 BiamoBimauMm BukimkoMm lock.unlock(), mo6
YHUKHYTH MOTEHIIIHUX B3a€MOOJIOKYBaHb 200 BUTOKY PECYPCIB.

ReentrantReadWriteLock - ay»e 4acTo BUKOPHUCTOBYEThCS B 0araTOIOTOKOBUX CepBicax 1 KellaxX, IMOKa3yIOUH JTy)KE XOPOIIH
IPHUPICT IPOAYKTHUBHOCTI B MOPiBHAHHI 3 Onokamu Synchronized. ITo cyTi, kiac mpaifioe B JBOX B3a€EMOBHUKIIOYHHX PEKHMAX:
0araro 4yuTa4iB OJHOYACHO YMTAIOTh JaH1 1 TUIbKUA OJIMH 3alIMCyBay 3alUCye JaHi.

ReentrantReadWriteLock.ReadLock - ReadLock mis unrauis, onepxyBanmii uepes readWriteLock.readLock().

ReentrantReadWriteLock.WriteLock - Write lock mns writer'os, onepxyBanwmii uepe3 readWriteLock.writeLock().

ReentrantReadWriteLocks moxuHa BHKOpHCTOBYBaTH I TIOKpAIIECHHS MapajelbHOCTI. 3a3BUYail IIe BapTO JIUIIE TOMi, KOJIH
OUIKYEThCS, IO KOJEKIli OyIyTh BEIUKHMH, JOCTYI JIO HUX MaTUME OUIbIlI€ MOTOKIB YWUTa4iB, HIK MOTOKIB 3alHCIB, 1
nepeadavaroTh omnepailii 3 HaKJIaJHUMHM BUTpPATaMH, K1 MEPEeBaXalOTh HAKJIaJHI BUTpPATH HA CUHXpOHi3aIiio. Hampukian, och
KJIac, sSIKMil BUKOpUCTOBYE TreeMap, sikuit, ik o4iKyeThCs, OyAe BEJIMKUM 1 10 SIKOTO JAOCTYI Oy/ie TOCTYITHUM OJTHOYACHO.

2 final Lock w =

curn new

finally { r.unloc
I

public Data put(s

itrantReadWritelock();

Read Locks: konu moTik 3amuTye OJOKYyBaHHS YHMTaHHS, HOr0 MOXHA
HaJaTH, SKIIO HEMaEe aKTUBHUX OJ0KyBaHb 3amucy. Kigbka MOTOKIB
MOXYTb yTpUMYyBaTh OJIOKYBaHHS YHUTaHHS OJHOYACHO, JOKH HEMae
O70KyBaHb 3amucy. SIKIIO TOTIK 3amuTye OJIOKYBaHHS UYWUTAHHS, aje €
aKTUBHE OJIOKYBaHHS 3amucy, BiH Oyae 3a0J0KOBaHO, JOKH OJIOKyBaHHS
3anucy He OyJe 3HSTO.

Write Locks: komu moTik 3anuTye OJIOKYBaHHS 3alKCy, HOTO MOXKHA
HA/IaTH, JIMIIE SIKII0 HEMAa€e aKTUBHUX OJIOKyBaHb UYHTAaHHA a0 3aIlucy, sKi
yTPUMYIOThCS IHIIUMU NOTOKaMu. Lle 3abe3neuye eKCKIIIO3UBHUMN TOCTYI
10 pecypcy IUisl HamucaHHs. SIKI0 € aKkTHBHI OJNIOKYBaHHS YMTAHHS,
yTpUMYBaH1 1HIIMMHU MOTOKAMH, TOTIK, KU 3alUTye OJOKyBaHHS 3aIluCy,
Oyne 3a0lI0KOBaHO, JOKUA HE Oyae 3HATO BCl OMOKyBaHHsS 4yuTaHHsS. Kpim
TOTO, TOTIK, SIKHH YTpUMye OJIOKyBaHHS 3alUCy, MOXE OTpPHUMAaTH
ONOKyBaHHSI YMTAHHs, HE 3HIMAIOUM OJIOKYBAHHS 3amHCy, TAKUM YHHOM
JI03BOJISIFOYH TTOBTOPHUN BXI1].

Reentrancy: sk OnokyBaHHsS YHTaHHsS, TakK 1 OJOKYBaHHS 3aIlUCy
HOIATPUMYIOTh TIOBTOPHE BXO/DKEHHS, TOOTO TMOTIK, SIKUH YTpUMYeE
ONMOKyBaHHSI, MOXE OTpUMArH TOW camMuil OJOKyBaHHS 3HOBY, HE
omokyroun cebe. [IoBTOpHE BXOKEHHS TO3BOJISIE BKIIAJEHE OJOKYBaHHS,
KOJIM TIOTIK MOXKE OTpUMAaTH OJOKYyBaHHS, KM BIH YK€ YTpUMYye, 0e3
OJOKyBaHHS.

CropasemmmBicts. ReentrantReadWriteLock 3aGe3neuye sik decHi, Tak i
HEYECHI MOJITUKH OTPUMAaHHS OJOKyBaHb. Y CIpaBEAJUBIA MOITHUII
MOTOKM OTPUMYIOTH OJIOKYBaHHSI B TOMY MOPSAJIKY, B SIKOMY BOHHU IIbOTO
3anmuTaId.Y HECHpaBeIJUBIM MOJITULI HEMAae€ TapaHTIi IIOAO MOPSAKY
oTpuMaHHs OJOKyBaHb, IO MOTEHIIMHO MOXE MPHU3BECTH A0 BTPATH
MOTOKY.

[Mpuknag

public class BankAccount {
private double balance = 0.0;
private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock readLock = lock.readLock();
private final Lock writeLock = lock.writeLock();
public double getBalance() {
readLock.lock(); // First lock acquisition
try {
// Read operation
return balance;

} finally {
readLock.unlock(); // First lock release

}
}
public void deposit(double amount) {
writeLock.lock(); // Second lock acquisition
try {
I/l Write operation
balance +=amount;
System.out.printin("Deposited: " + amount + ", new balance: " + balance);

} finally {
writeLock.unlock(); // Second lock release

}
}
public void withdraw(double amount) {
writeLock.lock(); // Second lock acquisition
try {
I/l Write operation
if (balance >= amount) {
balance -= amount;
System.out.printin("Withdrawn: " + amount + ", new balance: " + balance);
}else {
System.out.printin("Insufficient funds.");

}
} finally {

writeLock.unlock(); // Second lock release

} B

BankAccount account = new BankAccount();

/I Multiple threads performing operations on the account

Thread threadl = new Thread(() -> account.deposit(100.0));

Thread thread2 = new Thread(() -> account.withdraw(50.0));

Thread thread3 = new Thread(() -> System.out.printin("Balance: " + account.getBalance()));

threadl.start();
thread2.start();
thread3.start();

NMumaHHA

Sxe nmpu3HadYeHHS IMakeTa java.util.concurrent.atomic i sxy mpo0OiieMy CHHXPOHI3aIlil BiH pO3B’sA3y€?

SIki OCHOBHI KJacH aTroMapHUX 3MIiHHHX icHyIO0Th y Java (Atomiclnteger, AtomicLong, AtomicBoolean,
AtomicReference)?

Sx mpairroe mexanizm CAS (Compare-And-Set) i womy BiH € ocHOBOIO l0CK-free mporpamyBanHs?

Y yoMy mojisrae pi3HUI MiXK aTOMapHUMH 3MIHHUMH Ta BUKOPUCTaHHSIM Synchronized?

Sxe mpusHadeHHs kiacy DoubleAccumulator i unm BiH BiapizHseTbes Big AtomicDouble (a6o AtomicLong 3
IPUBEACHHSIM THITIB)?

Sx DoubleAccumulator 3a6e3neuye kpairy MacIITabOBaHICTh Y CHCTEMAX 3 BEIHUKOIO KiJIBKICTIO IIOTOKIB?

SIxy ponb Bizirpae acomiaruBHa GyHKIIis B poooti DoubleAccumulator?

[I{o Take iHTEpdeiic Future i sski MOXKJIMBOCTI BiH HaJIa€ /I KEPYBaHHS aCHHXPOHHUM BUKOHAHHSAM 3a]1a4?

Sxi ocHOBHI MeToau iHTepdeiicy Future (get, cancel, isDone, isCancelled) ra ix npu3HaueHHs?

. Uum ScheduledFuture Binpi3HseThcs Big 3Buuaiinoro Future?

. SIx ScheduledFuture BuxopuctoByetbes pasom i3 ScheduledExecutorService?

. SIki oomexxeHHs iHTepdericy Future ycysae kinac CompletableFuture?

. SIxki meromm CompletableFuture BukopucToBYIOTBCS 11 KOMIIO3MINI acHHXpOHHHX obOuncieHb (thenApply,

thenCompose, thenCombine)?

. SIk peanizyeThcst 00poOka BUHATKIB Y naHIokkax CompletableFuture?
. Y 4oMy moJsra€e BiIMiHHICTh MK OJOKYIOUUM OTpUMaHHSM pesyibTary (get, join) Ta HeOIoKyH040r 00pOOKOF0

pe3yabTaTiB?

