Jlekmiss 5. AroMapHi 3MIHHI Ta ACHMHXPOHHI
pe3yJabTarTu B 0araronoTokoBux Java-gogarkax

Tema 1. Kiacm, BrarodueHi mo makera java.util.concurrent.atomic, ta ix 3acTocyBaHHS s
peamizanii Heomokyrounx (lock-free) omepariit cuaxpoHi3arii.

Tema 2. Kmac DoubleAccumulator sk 3aci® BHCOKOIPOAYKTHBHOTO HAKOITMUYCHHS YHCIOBHX
3HAUY€Hb y 0AraTONOTOKOBOMY CEPEOBHIIII.

Tema 3. InTepdeticu Future ta ScheduledFuture s mpeacraBiaeHHS, KEPyBaHHS Ta IIaHyBaHHS
ACUHXPOHHUX PE3yIbTaTiB 0OUYKCIICHb.

Tema 4. Metonm kiacy CompletableFuture mis moOymoBH, KOMIIO3HIIT Ta 00OPOOKH aCHHXPOHHUX
oO4uCIeHb Y MOBI Java.

WorkQueue npu suxonanni 3aday POP ukopucmosye — Hadip K1acie AKi niompumyions HebI0Kyue 6a2amonomokoge
npoepamysants na pieni sminnux. L{i knacu sxaioueni 6 naxkem java.util.concurrent.atomic.

Hanpuknan kiacu:

Atomiclnteger, AtomicBoolean, AtomicLong, AtomicReference— n103BoJst0Th OHOBIIFOBATH Ta OTPUMYBATH 3HAYCHHSI
OJIHI€T 3MIHHOI BIAMOBIIHOTO TUITY. OKpIM KOHCTPYKTOPA, 111 KJIACH BKJIKOYAIOTh METOIA

v

ANEANERN

D NI NI N NI N

Get() — moBepTae NOTOUHE 3HAYCHHS 3MIHHOI, BiIIIOBIIHOTO THUITY.

set(int newValue) — 3miHIO€ MOTOYHE 3HAYCHHS 3MIHHOI.

getandset(int newValue) - moBeprae moTo4YHE 3HAYCHHS 3MIHHOT, ITICJIS IIBOTO 3aMIHIOE HOTO Ha HOBE.
compareAndSet(int expectedValue, int newValue) — nopiBHioe moroune 3HadeHHs odikyBanuM (expectedValue). Skiio
True, Toai mprU3HaYa€ HOBE 3HAYCHHS.

getAndincrement() - moBepTae MOTOYHE 3HAYCHHS 3MIHHOT, IMICJIA LIBOTO 301IBIIY€ 3HAYCHHS 3MiHHOT Ha 1.
getAndDecrement() - moBepTae IOTOYHE 3HAUCHHS 3MIHHOI, MICIIS IILOI'O 3MEHIIY€ 3HAYCHHS 3MIiHHOT Ha 1.
getAndAdd(int delta) - moBepTae morouHe 3HAUEHHS 3MIHHO1, IMiCIIA LIBOTO JOJA€ IO MOTOYHOI'O 3HAYCHHS «ICIIBTY»
incrementAndGet()- 30inblye 3HaUeHHS 3MIHHOL Ha 1, HiC/Is I[bOTO IOBEPTAE OHOBJICHE 3HAYCHHS.
decrementAndGet() - 3MeHIIye 3HaUCHHS 3MIHHOT Ha 1 , IMIC/IA I[HOTO ITOBEPTAE OHOBJICHE 3HAYCHHS.

addAndGet(int delta) - momae 10 MOTOYHOTO 3HAYSHHS «ICIBTY» IICISA I[HOTO TTOBEPTAE 3HAYCHHS.

Anzopumm 6e3 onoxkysanna (anzn. Non-blocking algorithm) — miaxinm y mapanenbHOMYy IporpaMyBaHHI Ha
CUMETPUYHO-0araTonpoIeCOPHUX CUCTEMAX, 10 Iepeadayae BIIMOBY BiJ TPAJMUIIMHUX MPUMITHUBIB OJOKYyBaHHS,
TaKuX SIK ceMadopu, M'toTekcu 1 moii. Po3nmoain 10CTymiB MK IMTOTOKaMU BIJIOYBA€THCS 3a JOMIOMOTOIO aTOMAapHUX
orepartii 1 creriagibHO po3poOIECHHUX M1 KOHKPETHY 3aady ME€XaH13MaM CHHXPOHI3aIlli.

[lepeBara airoput™MiB 0e3 OJIOKYBaHHS — JIIIIIIA MACIITA0OOBAHICTh MPH 30UIBIIEHHI KUTBKOCTI TporiecopiB. Kpim
toro, ko OC mnepepBe OJMH 3 MOTOKIB (POHOBOTO MPOILIECY, 1HII HIOHANMEHIIE BUKOHAIOTH CBOKO PoOOTY 0O€3
npocroro. [I{oHali0uIbIe — Bi3bMYTh HEBUKOHAHY POOOTY Ha ceoe.

AnroputMu 0€3 OJIOKYBaHb OYIYyIOTHCSI Ha aTOMapHUX OIepallifaxX, Halmpukiajl, YWTaHHA-MOIUQIKaIlIsI-3aMuc, 1
HANO1IBIN 3HAYYIA 3 HUX — nopieHanusn 3 oominom (CAS, Compare-and-swap).

Ipuxnao euxopucmanns kaacis Atomiclnteger, AtomicReference — ¢ conosnomy nomoui

class AtomicCounter implements Runnable {
static Atomiclnteger counter = new Atomiclnteger(0);

@Override
public void run() {
for (inti=0;i<1000; i++) {
counter.incrementAndGet();
}
}

public Integer get() {
return counter.get();

}
}

public class Counter implements Runnable {
private int counter = 0;

@Override
public void run() {
for (inti=0;i<1000; i++) {
increment();
}
}

private synchronized void increment() {
counter++;

}

public synchronized int get() {
return counter;

}
}

public final int getAndAddInt(Object o, long offset, int delta)

public final int getAndAddInt(Object o, long offset, int
delta) {

int v;

do {

v = getIntVolatile(o, offset);

} while ('weakCompareAndSetint(o, offset, v, v +
delta));

return v;

®yHKUiAa getAndAddInt € HU3bKOPIBHEBOID aTOMapPHOIO onepaui€elo, AKa
BMKOPUCTOBYETbCA Yy Knaci Unsafe B Java gna BUKOHaHHA aTOMapHOro
OHOB/IEHHA LiII0YNCENBHOIO NOAA B Nam’ATi.

BoHa aTomapHo gopace delta o uinouncenbsHoro nona o6’ekra o, ake
3HaxoAMUTbCA 3a 3MileHHAM offset y nam’saTi, noBepTae cTape 3HaYeHHA
nonsa nepes OHOBNEHHAM.

34MTYE NOTOYHE 3HAYEHHA:

getintVolatile(o, offset) unTae 3HauyeHHA LiNOYNCENBHOrO NOMA 33 a4PECO0
offset y nam’aTi 3 rapaHTi€El0 BUAMMOCTI AN iHWKX NOTOKIB (aHanor
volatile).

Linkn weakCompareAndSetint(o, offset, v, v + delta) Hamaraetbcs
aTOMapHO OHOBUTK MoJe:

AKwWo 3HaveHHA y offset Bce We AOPIBHIOE v, BOHO 3MiHIOETbCA Ha V + delta.
AKLLO iHWWIM NOTIK BXXe OHOBMB 3HAYEHHA, ONepay,is He CNPaLbOBYE, | LUKA
NMOBTOPHETHCS.

LIMKAN rapaHTyeE, WO HaBiTb NPY OAHOYACHMX CNpobax OHOB/IEHHA 3HAaYEHHA
NIMLLE OAWNH NOTIK AOCATHE ycnixy 3a pas.

MoBepTa€eTbCa CTape 3Ha4YeHHA (V) 40 OHOBNEHHS.

lepesaza:

Takuili migxiy yHMKA€ OJOKYBaHb, 110 MIJABUIIYE
e(EeKTUBHICTh y 0araronoTOKOBOMY cepeloBHIIl. SKIIOo
3HAQYEHHSI 3MIHIOEThCA I1HIIUM TMOTOKOM JIO BHUKOHAHHS
CAS, 1uuKI TOBTOPIOETHCS, TapaHTYKOUM KOPEKTHICTh
OHOBJICHHS.

public final boolean compareAndSet(int expect, int update)

[NepesBipAe€, UM NOTOYHE 3HAYEHHA 3MIHHOI AOPIBHIOE
expectedValue. AKWoO TaK, OHOB/IOE 3HAYEHHA HA
newValue i noBepTace true. AKWO Hi, HIYOrO He 3MiHIOE
Ta noseprTae false.

Atomiclnteger counter = new Atomiclnteger(5);
boolean updated = counter.compareAndSet(5, 10);
updated = counter.compareAndSet(5, 15);

public final int accumulateAndGet(int x, IntBinaryOperator accumulatorFunction)

public final int accumulateAndGet(int x,
IntBinaryOperator accumulatorFunction) {
int prev = get(), next = 0;
for (boolean haveNext = false;;) {
if ('haveNext)
next = accumulatorFunction.applyAsint(prev, x);
if (weakCompareAndSetVolatile(prev, next))
return next;
haveNext = (prev == (prev = get()));

}
}

Atomicinteger acounter = new Atomiclnteger(5);
boolean updated = acounter.compareAndSet(5, 10);
System.out.printin(updated);
System.out.printin(acounter.get());

updated = acounter.compareAndSet(5, 15);
System.out.printin(updated);

FapaHTye 6e3neyHe OHOBNEHHA 3MiHHUX Y 6araTonoTOKOBOMY
cepenoBULLI.

Hapae Moxnusictb BUKOPUCTOBYBATU A0BiNIbHY PYHKLiO OHOBNEHHSA,
Hanpuknaa:

DopasaHHA: accumulateAndGet(5, (a, b) -> a + b);

MHoxeHHA: accumulateAndGet(2, (a, b) ->a * b);

Makcumym: accumulateAndGet(3, Math::max);

X — BXigHe 3HayeHHsA, AKke byae BUKOPUCTAHE B 0OYMCNEHHAX.
accumulatorFunction — ¢yHKuis (IntBinaryOperator), ska npuitmae aBsa uini
yncna (NoToYHe 3HAYEeHHSs Ta X) i NOBEPTAE HOBE 3HAYEHHA.
BUKOPUCTOBYETLCA HECKIHYEHHWIA LIMKA, OCKiNIbKM OHOBNIEHHA MOXKe 3a3HaTH
HeBAa4i Yepes napanenbHi 3MiHK 3 60Ky iHLWKMX NOTOKIB

064nCNIOETBCA next 3a 4ONOMOror nepeaaHoi dyHKuii accumulatorFunction.
aTomHa cnpoba OHOBNEHHA 3HAYEHHSA Bif prev 40 next 33 4ONOMOrow
weakCompareAndSetVolatile(prev, next).

AKLO OHOBNEHHA yCniWHe, MeToa, NoBepTaE next.

AKLWO iHWMIK NOTIK 3MiHWB 3Ha4YeHHA Atomiclnteger, oHOB/NIEHHA He BAACTbCA.
prev = get() oTpMmye aKTyanbHe 3Ha4YeHHA 3MiHHOI, a haveNext nepesipse, un
3a/IMLWINNOCA BOHO TaKMM CaMUM.

AKLWO prev 3MiHXMA0CA, UMKA NOYMHAETLCA 3HOBY, | MeTog, Npobye we pas.

https://docs.oracle.com/javase/8/docs/api/java/util/function/IntBinaryOperator.html

public final int addAndGet(int delta)
@IntrinsicCandidate
public final int getAndAddInt(Object o, long offset, int delta) {
intv;
do {
v = getIntVolatile(o, offset);
} while (lweakCompareAndSetint(o, offset, v, v + delta));
returnv;

Yum BigpisHAeTbes addAndGet() Big getAndAdd()?
addAndGet(int delta) cnoyaTKy aoaae, a noTim
NOBEPTAaE OHOBJIEHE 3HAYEHHHA.

getAndAdd(int delta) cnouaTKy noBepTae cTape
3HayeHHsA, a noTim aoaace delta.

getintVolatile(o, offset) untae notouHe 3HaYeHHS
3MiHHOT (aHanor volatile-3untyBaHHA); 0 — 06'eKT, y
AKOMY 3HaxoamnTbcA 3MiHHa; offset — 3cyB y nam'sarTi,
AKWUN BKA3yE Ha MicLe 3MiHHOT BcepeamHi o.

MepeBipA€, UM v (NOTOYHE 3HAYEHHS) HE 3MiIHMA0CA 3
MOMEHTY YNTAHHA.

AKLLO He 3MiHMN0CA, TO OHOB/IIOE 3HaYeHHA Vv + delta.
AKLLO 3HAaYEeHHA 3MIHMNOCA IHWKMM NOTOKOM, cnpoba
noBToproeTbea (do-while).

public final void lazySet(int newValue)

public final void lazySet(int newValue) {
U.putintRelease(this, VALUE, newValue);

MeTop, BCTaHOB/IIOE HOBE 3HAYeHHA 3MiHHOT 6e3 HerauHoi
CUHXPOHI3auii 3 iHWKmKn notokamu. U.putintRelease

U — ue eksemnnsap Unsafe (BHyTpiWHiM Knac ans pobotn 3 nam'sTTio
Hanpamy).

this — 06'eKT, y AKOMY 3HaX0ANTLCA 3MiHHA.

VALUE — 3cyB 3miHHOT (0TpMmyeTbes Yepe3 Unsafe.objectFieldOffset).
newValue — HoBe 3Ha4YeHHA, AKe Tpeba 3anucaTu.

Meron lazySet koprcHuit y 6aratornoToKoBUX CTPYKTypax JaHHX, /1€ BAXKIMBO 3MEHIITUTH BUTPATH Ha CHHXPOHI3AIIIO:
Heo6nokyroui uepru (lock-free queues) — mo3Bosisie oHOBIIOBaTH MOKakurKH head 1 tail 6e3 3aTpUMOK.

JliunnpHuKH (counters) — 3MEHINYe HAaBAHTAXXEHHS Ha MPOIIECOP MPU YaCTUX OHOBIICHHSX.

B Atomiclnteger e meton set(), sikuii paritoe iHaKIie:

set(x) — anasor volatile, To6To Bipasy BUIHO iHIINM ITOTOKaM.

lazySet(x) — 3anuc BigOyaeThCs 3 HEBEIMKOIO 3aTPUMKOIO, alie MPAIIOE MIBHUIIIIC.

Class DoubleAccumulator

DoubleAccumulator — ye Knac y nakerti java.util.concurrent.atomic, npusHayeHnn gna epeKkTMBHOrO aTOMapHOro
0b4YncneHHA 3HaYeHb 3 BUKOPUCTAHHAM 33/1aHOi KOMYTaTMBHOI Ta acoLiaTUBHOI onepau,ii (Hanpuknaa, cymun, A00yTKy,
MaKCMMyMy ToLo). [l03BONAAE OAHOYACHI OHOB/IEHHA 3HAYeHHA 6e3 610KyBaHb. NiaxoanTb Ans
BMCOKOHABaHTaXKeHMX 6araTonoToKOBMX NPOrpam.

public DoubleAccumulator(DoubleBinaryOperator accumulatorFunction — 6iHapHa onepauia (Hanpuknaa,
accumulatorFunction, double identity) Double::sum ana cymn).

identity — noyaTKkoBe 3HayeHHsA (Hanpuknag, 0.0 ans
cymu abo 1.0 ana aobyTky).

public void accumulate(double x) OHOB/IEHHA 3HAYEHHS

public double get()

public void reset() CKMAQHHA A0 NO4YaTKOBOro 3HAYeHHA
getThenReset() OTPUMATU 3HAYEHHS | CKUHYTU
accumulator.accumulate(10.5); ?

accumulator.accumulate(5.2);
accumulator.accumulate(3.3);

maxAccumulator.accumulate(5.0); ?
maxAccumulator.accumulate(15.7);
maxAccumulator.accumulate(9.3);

public void accumulate(double x) - peanizauis

public void accumulate(double x) {
Cell[] as;
double b, v;
int m;
Cell a;

if ((as = cells) !=null || 'casBase(b = base, b,
function.applyAsDouble(b, x))) {
boolean uncontended = true;
if (@as==null || (m=as.length-1)<0 ||
(a = as[getProbe() & m]) == null ||
l(uncontended = a.cas(v = a.value,
function.applyAsDouble(v, x)))) {
longAccumulate(x, function, uncontended);

}
}
}

LockFreeQueue - - anroputm nobyaosu lock-free yepr. MNepwe 6yno 3anponoHoBaHo - Mareg M. Manknom i
Maiknom J1. CKoTTom

MoTik A noynHae aoaasaTtn elemA:

CtBOpIOE HOBY BEpPLUUHY.

OHoBAtoOE T.next - HOBUM eNnemMeHT SOAAETLCA B Yepry.

He BcTrae oHoBMTM T (BOHO LU BKA3y€E Ha NONepeaHto BEPLUNHY).
3acnHae yepes nnaHysaabHUK OC.

MoTik B Hamaraetbca gogatm elemB:

MNepesipae T.next nepen CAS-onepadieto.

T.next He null, ocKinbKK NOTIK A BXe BCTaBMB elemA, ane ue He oHoBMB T.
CAS (T.next == null) npoBantoeTbCA.

MoTiK B 3acTpAra€e B LMKAi NOBTOPHUX CNpob.

MoTik A NpoKMAaeTbeA:

3aBepuiye oHoBAeHHA T (Nnepemiwye T Ha elemA).

Tenep T.next == null, i noTik B moxke BnukoHatn CAS.

MoTik B ycniwHo aoaae elemB.

BucHoeoK:
MNoTik B He morKe nporpecysBaTH, NOKM NOTIK A He OHOBUTbL T.

Anroputm mae npobnemy rapaHTii nporpecy, wo nopywye npmuHumn lock-free.
MNoTik B 3anexutb Big, po3knagy notokis y OC.

Moxnumsuin ¢ikc: BukopuctaHHa gsox CAS abo gonomixkHoro mapkepa "pending"”
anaT.

public void enqueue(T value) {
Node<T> newNode = new Node<>(value);
while (true) {
Node<T> last = tail.get();
Node<T> next = last.next.get();

if (last == tail.get()) {
if (next == null) {
if (last.next.compareAndSet(null, newNode)) {
tail.compareAndSet(last, newNode);
return;
}
} else {
tail.compareAndSet(last, next);

}

Enqueue (enqueue):

CTBOpPIOE HOBUI BYy30/

3HaxoguTb XBiCT

AKLWoO, He ByNo We AoAaHOo efieMeHTy (next
== null)

[lonae enemeHT B XBICT Yyepru
tail.compareAndSet(last, newNode);

B LockFreeQueue, AKLWO OAMH NOTIK HE
BCTMrae oHoBUTY tail, iHWI NOTOKM MOXKYTb Le
3p0bUTN CamMOCTiNHO.
tail.compareAndSet(last, next);

Interface Future<V>

! v

CompletableFuture] |CountedCompleter ForkJoinTask

FutureTask, _
RecurstveAction, S\VlﬂgWDI’l{EI'

RecursiveTask

public static void testFuture(){
ExecutorService executorService = Executors.newSingleThreadExecutor();
Callable<Integer> task = () -> {
int sum=0;
for (inti=1;i<=10;i++){
sum +=i;
Thread.sleep(100);
}
return sum;
2
Future<integer> future = executorService.submit(task);
System.out.printin("Doing some other work...");

try {

Integer result = future.get();
System.out.printIn("Result from Future: " + result);
} catch (Exception e) {
System.err.printin("Error while retrieving the result: " + e.getMessage());

}

executorService.shutdown();

Kntouosi meToam manbyTHbLOTO:

get(): noBepTae pe3ynbraT 06UMCNEHHS.
BNOKYE, AKWO 064YMCNEHHS He 3aBepLUeHO.
isDone(): nepeBipsE, Yn 3aBepLIEHO
obuncneHHs.

cancel(): Cnpoba ckacyBaTn obuymcneHHA.

public static void getResultsnotBlocking(Future<integer> future)

{
if (future.isDone()) {

Integer result = null;
try {
result = future.get();
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (ExecutionException e) {
throw new RuntimeException(e);
}
System.out.printin("Result from Future: " + result);
}else {
System.out.printin("Still waiting for the result...");
}
}

future.isDone() BUKOPUCTOBYETHCA ANA NEPEBIPKU
3aBepLUEHOCTI BUKOHAaHHA 3aBAaHHA 6e3 6/10KyBaHHA
NOTOKY. Lle A03BONAE YHUKATU CTAHY OYiKYBAHHA |
BMKOPUCTOBYBATM NOTIK AN iHWMX 3aBAaHb, JOKK
aCUHXPOHHE 3aBAaHHS BUKOHYETbCA.

future.isDone() no3BONSIE NEPIOAMYHO NEPEBIPATH
3aBepLleHHA 3aBAaHHA, NPOAOBXKYOUYM BUKOHYBATU IHLUI
Ail B NOTOL.

AKLLO 3aBAaHHA LLLe BUKOHYETbCA, NpOrpama Mmoxe
BUKOHYBaTK ("pobutn'") B napanenbHomy notou,.

public static void getResultisDone(Future<Integer> future)
{
while (!future.isDone()) {
System.out.printin("3aBaaHHs Lie BUKOHYETbCA... ');
try {
Thread.sleep(500);
} catch (InterruptedException e) {
System.err.printIn("OcHoBHMI NOTiK NepepBaHo.");
}
}

try {
System.out.printIn("Pe3ynbtat: " + future.get());
} catch (InterruptedException | ExecutionException e) {
System.err.printIn("BuHukna nomunka.");
}
}

byaemo nepeBipATK cTaTyc 3aBAaHHA KOXKHI 0.5 sec.

public static void getResultbyPartBlocking(Future<integer> future)
{
try {
Integer result = null; // Timeout of 500 milliseconds
try {
result = future.get(1000, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (ExecutionException e) {
throw new RuntimeException(e);
}
System.out.printin("Result: " + result);
} catch (TimeoutException e) {
System.err.printIn("Timeout waiting for the result!");
}
}

MNpuKknagn 3agav

BukopucTtaHHa future.get():

3aBaHTa)XeHHA AaHUX 3 cepBepa, Ae AaHi NOTPIbHI AnAa obuyncneHsb.

Ob6umncneHHA AOBroTpUBainX 3HaYeHb (HanpuKaag, NOWYK HAMKOPOTLUOrO LWAAXY).

[eHepaLia KPUTUYHUX 3BITIB (3BIT HE MOXKe BYTU NPOoNyLLEHN).

BukopucTtaHHaA future.isDone():

Peani3auia Tanmepa abo ¢oHOBOro n10ry akTMBHOCTI, JOKM 3aBAaHHSA He 3aBepLUEHO.

ACUHXPOHHE BMKOHAHHSA, NPU LbOMY OCHOBHWI NOTiK BUKOHYE iHLWe (HanpuKaag, OHOBAEHHS iHTepdency).
MOHITOPUHI CTaHy 3aBAaHb 6€3 3ynnMHKKN poboTK Nporpamm.

V get() throws InterruptedException, ExecutionException

3a HeobXiaHOCTI YeKae 3aBepLIeHHA 0bUYMCNeHHs, a
NOTiIM OTPUMYE MOFO pe3ynbTar.
CancellationException - 3aBaaHHA 6yno BigKANKaHO

ExecutionException - BUHATKOBA cUTyauia nig vac

BUKOHAHHA 3aBAaHHA
InterruptedException - noTik 6yno BigkAMKaHO, Nig,

4Yac OYiKyBaHHA

MeTOo, NPU3HAYeHnUn ANsa BUNaaKiB, KoM BigOMO, LLO
3aBAaHHA BXe yCnilHO 3aBepLUeHOo

boolean isCancelled()

boolean isDone()

boolean cancel(boolean maylnterruptlfRunning);

MoXe BUK/IMKATUCD 3

cancel(TRUE)- meToa Hamaraetbca nepepsaTtu
3aBAaHHA HaBIiTb Y Pa3i, AKLLO BOHA BKe 3anyLieHa Ta
BUKOHYETbLCA.

cancel(FALSE) - aBaaHHA byae ckacoBaHO nnwie y
BMNaAKY, AKLLO BOHO Lle He byno po3noyaTo.

MeToa noBepTaE true, AKLLO 3aBAaHHA 6yn0 ycniwHO
CKacoBaHo, i false iHaKwe (HanpuKknaa, AKLLO
3aBAaHHSA BXKe 3aBepLUEHO).

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutionException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CancellationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutionException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

public interface ScheduledFuture<V> extends Delayed, Future<V>

BinknagaeHa pesynbTaTUBHA fis, SKY MOXXKHa cKkacyBaTW. 3a3BuYai 3annaHoBaHe ManbyTHE €
pes3ynbTaTOM NnaHyBaHHS 3aBAaHHS 3a gornomoroto ScheduledExecutorService.

Methods inherited from interface java.util.concurrent.Delayed

getDelay

Methods inherited from interface java.lang.Comparable

compareTo

Methods inherited from interface java.util.concurrent.Future

cancel, aet, get, isCancelled, isDone

public static void testScheduleFuture() {
ScheduledExecutorService scheduledExecutorService =
Executors.newScheduledThreadPool(1);
Runnable scheduledTask = () -> {
int sum = 0;
for (inti=1;i<=10;i++) {
sum +=i;
}

System.out.printin(sum);
2
ScheduledFuture<?> scheduledFuture =
scheduledExecutorService.scheduleWithFixedDelay(

scheduledTask, 0, 1, TimeUnit.SECONDS);

scheduledExecutorService.shutdown();

MeTop, scheduleWithFixedDelay() 3
ScheduledExecutorService BUKOPUCTOBYETbCA ANA
NNaHYBaHHA NOBTOPHOBAHMUX 3aBAaHb i3 PiKCOBAHOLO
nay30to (3aTPUMKOLO) MirXK 3aBepLUEHHAM OHOrO
BMKOHaHHA | NoYaTkom HacTtynHoro. Lle Bigpi3HAETLCA Bif,
scheduleAtFixedRate(), AKMI1 BUKOHYE 3aBAaHHA 3
diKCOBAaHUM IHTEPBANOM HE3aNEXHO Bif Yacy
BUKOHAHHS.

Kntouosi ocobaunsocTi scheduleWithFixedDelay:
3aTPUMKaA MiX BUKOHAaHHAMM: 3aBAAaHHA 3aMNYCKAETLCA 3
Nay30t0, IKa NOYNHAETLCA NICNA 3aBEPLUEHHA
nonepeaHbOro BUKOHAHHA.

[AapaHTOBaHe O4YiKyBaHHA 3aBepLlIeHHA nonepeaHbOol
3a4avi: HactynHe BUKOHAHHA NOYMHAETLCA Ti/IbKKU NicnA
TOro, K nonepeaHe 3aBepwunTbea (i nicna 3agaHoi
3aTPUMKMN).

public ScheduledFuture<?> scheduleWithFixedDelay(Runnable
command,

long initialDelay,

long delay,

TimeUnit unit);

initialDelay — Bu3Ha4ya€e noyaTKy 3aTPUMKY A5 3aBAAHHSA
Delay — BU3Haya€e 4ac 3aBeplleHHAM OAHOr0 BUKOHAHHA |
MOYATKOM HACTYMHOro

CueHapii BuKopuctanHa scheduleWithFixedDelay:

1. BUKOHAHHA nepioanYHMX 3aBAAHb i3 HenepeabayeHMM YacoM 3aBepLLUEHHA

AKLLO BM He 3HAETe, AK A0Bro TpMBaTUMe 3aBAaHHA, | xoueTe 3abe3neynTn AOCTaTHIO Nay3y MiK NOBTOPHUMM
3anyCKamu.

Hanpuknag: 36upaHHA AaHKX i3 AaTUYMKIB, A€ KOXHE BUKOHAHHA 3a1€XKUTb Bif Yacy, HeobxiagHOro Ansa OTPMMaHHA Yin
0b6p0ob6KM iHbOopPMaLii.

2. PoborTa 3i 30BHiWwHiMK pecypcammn (APl / Cuctemamm) - 3anutn go APl yepes perynapHi iHTepsanu yacy.
Hanpuknag: Bu BignpasnaeTe AaHi Ha cepBep, i Bam NOTpibHa 3aTpuMKa nepes HacTynHO onepauieto ana o6pobku
nonepeaHbLOro 3anuTy.

3. ®oHoBI 3a4aui, AKI NOTPeDbYIOTb OUYNLLEHHA YN MOHITOPUHTY

MOHITOPUHT pecypciB, TakMx K NepesipKa cTatycy 6asu gaHmx, ¢annosoi cnctemu, abo cTaTycy 30BHILLUHIX CEPBICiB.
3aBAaHHA, AKe OYMLLLAE CTapi AaHi abo TMMYacoBi pannm pas Ha KilbKa XBUJIUH.

4. 3aBAaHHA 3 HABAHTAXXEHHAM

AKLWO 3aBAaHHSA CMOXKMBAE BEIMKUIN 06CAr pecypciB (npouecop, mepexKa), i BU xoyeTte, W06 BOHM BUKOHYBAUCH i3
nay3amMm MiXK 3aBepLlUeHHAM YeproBoro BUKOHAHHA.

5. JloriyHnm Tanmep Ana HeperynspHoi pobotu

Hanpuknapg: 3aBgaHHA aBTOMAaTUYHOIO BUKOHAHHA, AKe He NoTpebye NOBHOIo KOHTPO/IKO Yacy NOYaTKy, a AmLle
dikcoBaHy nay3y nepes NOBTOPHUM 3anyCKOM.

public static void logging()
{
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(1);
Runnable task = () -> {
System.out.printIn("3anuc nory: " + System.currentTimeMillis());
|3
executorService.scheduleWithFixedDelay(task, 0, 5, TimeUnit.SECONDS);
}

public interface RunnableScheduledFuture<V> extends RunnableFuture<V>, ScheduledFuture<V>

RunnableScheduledFuture e intepdeticom y Java Concurrency API, skuii BUKOPUCTOBYEThCS IS IUIAHYBAHHS ITOBTOPIOBAHKMX a00 BiIK/IaJCHHUX 3aBIaHb.
Lleti inTepdeiic moeanye moxkauBocTi RunnableFuture (mo6 3aBmanHs MokHa Oyino BukoHyBath B motomi) Ta ScheduledFuture (mmst pobGotu 3
BIJKJIaJICHUMH a00 MEePIOAMYHUMU 3aBIaHHIMH).

public ScheduledFuture<?> schedule(Runnable ScheduledFutureTask: OcCHOBHWIA MexaHi3m, AKWIA ynpaBase
command, 3aBAaHHAM i peanisye RunnableScheduledFuture. BiH 06'egHye
long delay, dyHKUiT Runnable, Future i ScheduledFuture.
TimeUnit unit) { triggerTime(): MeTtoa o06uMcnioe 4Yac 3anycKy 3aBAAHHA,
if (command == null || unit == null) Aoaaroum 3aTpmmky delay 4o nOTOYHOro Yacy.

Llem meTon KoHBepTye 3aTpumKy delay y 6a30Bi oguHuUi yacy

throw new NullPointerException(); (3a3BMuYall y HaHOCeKyHAM) i Aodad€e ii 4O NOTOYHOro 4acy

RunnableScheduledFuture<Void> t = cuctemn (System.nanoTime()). Takmm 4UMHOM, BiH BW3HAYaE
decorateTask(command, MOMEHT Y MalbyTHbOMY, KO/IM 3aBAaHHA MaE ByTU BUKOHaHe.
new ScheduledFutureTask<Void>(command, null,
triggerTime(delay, unit), sequencer.getAndincrement(): YHikanbHuA HOmep (sequence
sequencer.getAndincrement())); number), AKWIA BUKOPUCTOBYETbCA ANA iAeHTUIKALLT YeproBocTi
3aBAaHb.

delayedExecute(t);

decorateTask(): MeTtoa, AKMA MOXKHaA NepeBU3HAYUTU ANA
return t;

CTBOPEHHS BNAaCHUX Bepcilt 3aBaaHb. CTaHAapTHO BiH MOBepPTaE
} nepeaaHe 3aBAaHHA 6e3 3MiH.

Modifier and Type Method and Description

boolean isPeriodic()
Returns true if this task is periodic.

Methods inherited from interface java.util.concurrent.RunnableFuture

run

Methods inherited from interface java.util.concurrent.Delayed

getDelay

Methods inherited from interface java.lang.Comparable

compareTo

Methods inherited from interface java.util.concurrent.Future

cancel, get, get, isCancelled, isDone

public class RunnablePeriodic
{
static class CustomScheduledThreadPoolExecutor extends
ScheduledThreadPoolExecutor {
public CustomScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize);

}

@Override
protected <V> RunnableScheduledFuture<V> decorateTask(Runnable
runnable, RunnableScheduledFuture<V> task) {
// NoBepTaemo Halle 3aBAaHHA A1A NOAANbLIOIO aHanisy
return super.decorateTask(runnable, task);

}
}
}

public static void testRunnable(){
RunnablePeriodic.CustomScheduledThreadPoolExecutor

executor = new

RunnablePeriodic.CustomScheduledThreadPoolExecutor(1);

Runnable oneTimeTask = () ->
System.out.printIn("[OgHopa3oBe 3aBaaHHA] BUKOHaHO!");

Runnable periodicTask = () ->
System.out.printIn("[MepioanyHe 3aBaaHHA] BUKOHYeTbCA...");

ScheduledFuture<?> oneTimeFuture =
executor.schedule(oneTimeTask, 2, TimeUnit.SECONDS);

ScheduledFuture<?> periodicFuture =
executor.scheduleAtFixedRate(periodicTask, 0, 3,
TimeUnit.SECONDS);

System.out.printIn("OgHopa3sose 3aBaaHHs isPeriodic(): " +
((RunnableScheduledFuture<?>)
oneTimeFuture).isPeriodic()); // Ouikyemo false

System.out.printIn("MepiogmnuHe 3aBaaHHA isPeriodic(): " +
((RunnableScheduledFuture<?>)
periodicFuture).isPeriodic()); // Ouikyemo true

executor.shutdown();

}

public class CompletableFuture<T> extends Object implements Future<T>, CompletionStage<T>

CompletableFuture — ue: Knac, akmnn peanisye iHtepdenc Future, po3wmpooum Noro GyHKLIOHANbHICTb.
* ACUHXPOHHE 0bYMCNEeHHA:

3aBAaHHA 3aMyCcKaloTbCA B OKPEMMX MOTOKAX.

OCHOBHi MeToan ANA CTBOPEHHS aCUHXPOHHMX 3aBAaHb: supplyAsync() i runAsync().

* YeuHiHr onepauin:

MONBICTb BUKOHYBATM Ki/ibKa NOB'A3aHUX onepaLin, AKi 3aneKaTb 0A4Ha Big O4HOI:

Bukopuctosytotbca metoamn thenApply(), thenAccept(), thenRun().

 O6pobKa pesynbraty:

By moxeTte 06pobuTtn pesynbtaT NicnA 3aBepLUEHHS 3aBAAHHA, @ TAKOX OTPUMATK Pe3ynbTaT aCUHXPOHHOTO
BMKOHAHHA.

 0Ob6pobKa BUHATKIB:

MoXnunBicTb nerko o6pobaaTH BUHATKM 33 gonomoroto metoaiB exceptionally() i handle().

[MapanenbHe 0bUYNCIEHHA:

Mo»KNMBICTb 3aNyCKaTK KifibKa 33434 04HO4YACHO i KoMbiHyBaTH ix pe3ynbtath Yyepes allOf() abo anyOf().

* supplyAsync(Supplier<T>)" 3anyckae acMHXpPOHHe 3aBAaHHA, AIKe NoBepTae pesynbTar.

“runAsync(Runnable)” 3anyckae acMHXPOHHe 3aBfaHHA 6e3 NOBepHEeHHA pe3ynbTaTy.

Po3msiHeMo nporpamy, B K1i MOTIK Ma€ BUKOHYBaTH 3aj1a4i 1-4 TouHO B MOPSJIKY, K1 MU BU3HAYUIIU, TOOTO
micad 3aaa4dl 1 -> 3amaya 2 -> 3agaul 3-> 3aga4a 4
Jliis iboro BuKoprcTOoBYtOTH COmpletableFuture

private static void executetaskinorder() { Meton CompletableFuture.runAsync() —
CompletableFuture<Void> future = CompletableFuture BKJTIOYAE 3a71adi, IKi MAlOTh OYTH BHKOHAHI

runAsync(() -> task1()) e
CIIOYATKY, TOOTO 3a7ad4i 1HiIriai3anmii.
. thenRun(() -> task2()) Y Al 1 I

thenRun(() -> task3()): Meron ComplejtabIgFuture.thenAsync() g
BKJIFOUAE 3a/1a4l, SIKi MaloTh OyTH BUKOHaH1
- try { IiCJIsl 3aBEpIUICHHS 1HILIATI3allli.
Task 2 future.get(); // Blocking call to wait for completion of all
tasks

} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();

Task 3 }
}
private static void task1() {
¥ System.out.printIn(*Task 1 completed");
Task 4 }

private static void task2() {
System.out.printIn("Task 2 completed");

}

private static void task3() {
System.out.printIn("Task 3 completed");

}

“thenApply(Function<T, R>)"

“thenAccept(Consumer<T>)"

“thenRun(Runnable)”

“thenCompose(Function<T,

CompletableFuture<R>>)"

BukoHye onepauiio Hag OTPUMaHWUM pe3ynbTaToM i
noBepTaE HOBUMW pesynbTar.

BukoHye fjlo Hag OTpUMaHUM pe3ynbTaToM 6e3
NoBepPHEHHA 3HaYeHHA.

BUKOHY€E aCMHXPOHHY filo NiCNsA 3aBepLUEHHA NOTOYHOro
3aBAaHHA, He 6epe pesynbTar.

KDMI’IGH"_I{'E.‘. 3anexHi ECHHXF.IDHHi JaBfaHHA, NOBEpPTaE
HOBWH * CompletableFuture".

Class CompletableFuture<T>

CompletableFuture BukoprCTOBY€THCS ISl ACUHXPOHHO20 TIPOTPaMyBaHHS B Java. ACHHXPOHHICTh — II€ TIPOIIEC
00OpoOKHM BBEJICHHS/BUBOMY, IO JO03BOJISE TPOMOBKHTH OOpOOKY iHIIMX 3aBlaHb, HE YCKAIOYM 3aBEPIICHHS
NOTNEPEAHBOTO 3aBaHHs. TaKuM YMHOM, OCHOBHMU TMOTIK HE OJIOKY€ThCS 1 HE Mependavyae 3aBepIICHHS 3aBJaHHs,

a 3HAYUThb, MOXKE TapajejbHO BHUKOHYBAaTM ¥ 1HIN 3aBAaHHA. Takui Tmapanei3M 3HA4yHO IJBUIIYE
POIYKTUBHICTH IPOTPAMHU.

Synchronous API Asynchronous API

g ik g s
|

execute task

submit task
: » L
i

@ Blocked

1 Runnable Callable

CompletableFuture — me posmmpennst Future API

Future BUKOPUCTOBYETHCS K TTOCUJIAHHS Ha PE3yJIbTaT aCHHXPOHHOI 3a1a4i. Y HboMy € meTof ISDone() ms
NIEPEBIPKH, 3aBEPIIMIIACS UM 3a7a4a 9M Hi, a TaKoXK MeTox get() mis orpuMaHHs pe3yiabTary Micis Horo
3aBEPILICHHS.

Oomexenns Future API

1. Future uekae BiANMOBII BiJl MOTOKY, IKW BUKOHYE 3aJ1a4y, KO e MOTIK 3 KKUX IIPUYUH HE BiAMOBIIAE,
toni Future «3aBucae»

ExecutorService service = Executors.newFixedThreadPool(1);
Future <Integer> future = service.submit(new CallableTask());
try {
//AKWo 3a4a4y He 3aKiHYeHO To NOoTiK byae 3a6/10K0BaHO
Integer result= future.get();
System.out.printIn("Result from the task is "+ result+" ");
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (ExecutionException e) {
throw new RuntimeException(e);

}

service.shutdown();

Oomerxncennsn Future 2. Opzanizauis eionogioeit memooy call ona 6invu nise ooniei 3a0aui
1) 3amaui Oyay 3aKiHYYyBaTHCh B «HECOYIKYBaHOMY» TOpSAKY. Jljos anropuTmiB, sKi
nepen0avaroTh MOPSIA0K BUKOHAHHSA 3a/1a4 -MeToiu FUture He MoXXKyTh BUPIIIATH TTPOOJIEMY.

=

i = Paoal
i'% =t m
i
! future is blocked .
i
i

L 5

! Task1
i after all tasks are com pleted H

No Ok whNE

© oo

10.

NMumaHHA

Sxe npu3HadeHHs Kiracy CompletableFuture i1 sxi mepeBaru BiH Hajae MOPIiBHAHO 3 iHTepdeiicom Future?

Sxi meromu CompletableFuture BukoprCTOBYIOTBCS IS 3aIlyCKYy aCHHXPOHHUX 3aaa4 (runAsync, supplyAsync)?

Y yomy nossirae pizauis Mixk metogamu thenApply, thenAccept Ta thenRun?

Sk npamrorots Metoau kommo3uilii thenCompose ta thenCombine i B skux BUIaKaX iX JOIIIBHO BUKOPHCTOBYBATH?
Sxi moxkuBoCTI 00p0oOKH moMrTok Hanae kimac CompletableFuture (exceptionally, handle, whenComplete)?

Sxe mpusHadeHHs kiacy ReentrantLock i uuM BiH Bifpi3HIETHCS Big MexaHi3My Synchronized?

Sxi ocHoBHI MeToau Kkinacy ReentrantLock 3ab6esneuyrors kepyBanHs OnokyBanHsM (lock, tryLock, lockinterruptibly,
unlock)?

[I{o Take cupaBemause (fair) omoxyBanus B ReentrantLock i1 sx BoHO BIMBae Ha IPOIYKTUBHICTD?

Y yomy mossirae nepeara Bukoprctands ReentrantReadWriteLock y GararomoTokoBux cepBicax i3 ImepeBakaHHSIM
ornepariiii YnTaHHs?

SIx BUKOpHUCTaHHS OKpeMHUX OlOKyBaHb Ha uynTaHHs Ta 3ammc (readLock, writeLock) BrummBae Ha MacmTabOBaHICTD i
MPOIYKTHUBHICTH KEIIIiB?

