JNlekuia 4. Peani3zauia peKypcMBHOro niaxoay B
6baraTonoTo4HOMY NporpamyBaHHi MOBOLO Java.

Tewma 1. Opranizaiiiss BAKOHAHHS 3aBJIaHb Y IYJI1 32 AITOPUTMOM «PO3ILTATH —
BUKOHATH — 00’ €THATH.

Tema 2. Kitac ForkJoinTask. Anroputm «xpamixku 3amad» (Work stealing).

Tema 3. Kitacu RecursiveTask ta RecursiveAction — crijibHI XapaKTepHCTHKH Ta
BIAMIHHOCTI.

ForkJoinPool — e peasmizarist myimy MOTOKIB, CTBOPEHA IS IMATPUMKH PEKYPCUBHOTO I1XOMy THITY ''PO3MIISH i
BOJIOJAPION

Fork (po3minenns): 3agaua po30MBAETHCS Ha MEHIII ITia3anadi (peKypCcuBHE TiJICHHS POOOTH).

Join (3'eqnanns): Pe3yasrary mia3anad 3’€HYIOTHCS MIC/ISA 3aBEpPIICHHS X BUKOHAHHS.

L1 3aga4i, a00 oAMHUII POOOTH, JOAAIOTHCS A0 CIIILHOIO MYJY IMOTOKIB 11 BUKOHAHHS.

K110 NOTiK BUKOHAB yBECh HA01p 3aJ1a4 31 CBOEI Uepru, 3aMiCTh TOTO 1100 MPOCTOIOBATH, BiH "Kpaze'" 3a/1aul 3 4epr 1HIITUX
IIOTOKIB, K1 JIOCi 3aiHATI. L{e Ha3uBaeThCsA allrOpUTM KpaaiKku podoTu «Work stealing» - 3a6e3neuyro Ganamnc
HAaBaHTAXKEHHS IMOTOKIB B «3arajilbHOMY ITyJIi».

OCHOBHa 11€s1 KpaIiKK1 pOOOTH MOJIATa€ y JMHAMIYHOMY OajlaHCYyBaHH1 HaBaHTAXKEHHS IM1]] YaC BUKOHAHHS ITPOTrpamMu
IUISIXOM MEePEePO3IOALTY 3a/1a4, Kl PO3MOIJIeH] HEPIBHOMIPHO MK moTokaMH. Lle 3abe3neuye MmakcuManbHO €(DEKTUBHE

BUKOPUCTAHHS BCiX JOCTYITHHX sIIEp Mporiecopa.

public class ForkJoinPool extends AbstractExecutorService

B 1poMy mysii KOKE€H MOTIK MPAIIOE€ 31 CBOEK YEProro (Yepra peanizoBaHa 3a MPUHIUIOM JEKY), sIKa HAa3WBAETHCS
WorkQueue. SIkmio moTik BHKOHAB BCi 3ajadi B «CBOIH» uep3i, TOMI BiH «3a0upae» 3amaqy 3 «4yxoi» depru. Taka
MOBEIIHKA peajiizoBaHa 3a aaropuTrMoM «Work stealing» - 3a0e3meuyro OanaHC HaBaHTa)KEHHS IOTOKIB B «3araJbHOMY
myii». [loTik 31 cBo€T yepru Oepe 3amady — 3 rosioBu depru (head); morik, skuii 3a0upae 3amaqy 3 dy»xoi gepru — oepe ii
3 xBocrta (tail). Takum ymHOM, 3a/madi 31 CBOEI Uepru 3aBkAu BHKOHYIOThCA BiamoBigHo LIFO, To6To ocTanHs momaHa
3aJ1a4a BUKOHYETHCS TIEPIIIOHO.

chared ForkJoinPool
queus

sl WorkQueue head
-FORK 3 Sub-Task 1

T Sub-Task 2 J' i
- » | sub-taski {—pnp Thread 1 Results

submit Sub-Task 3

Execuie

Sub-Task 4 Stealing work
| | | | Thread 2 Fesults
as
sub-faské | subiask2 € Thread 3 Results

I
push
|

sub-task?

pop—> Thread 1

sub-taskZ

sub-taskl

Y

Stealing Work Thread

SKI110 TOTIK 3aBEpIIIy€e CBOIO MTOTOYHY 33/1a4y W 0auuTh, IO MOTO Yepra MOPOXKHS, BIH CTA€ '3JI0M1€EM", SKUM HaMara€eThCs
"kpacTH" 3a/1a4i 3 HKHBOI YaCTUHHU YeprH iHmoro notoky (FIFO-3amoBieHHs).
3amaui kpangyThes 3 npotuiackHoro kinmg (FIFO), ockinmbku crapimii 3agadi 3a3BHMYail MarOTh OUIBIIHK 0OCST 1 MOXYTh
MOPOXKYBaTH OiMbllIe Mif3aaay, 10 JO3BOISE MEPEPO3NOATUTH Oibllle pOOOTH.
[lin yac AMHAMIYHOIO CTBOPEHHS 1 3aBEPIICHHS 3aJa4 AJITOPUTM KPaAlKKU poOOTH OanaHCy€e HABAHTAXXCHHS MIXK

MIOTOKaMH, MEPEMIIITYOUH 3a/1a4l 3 OIBII 3aBaHTAXKEHUX IMOTOKIB JI0 THX, SIKi IIPOCTOIOKOTh.

Ilepesacu anzopummy Kpaoixxccku pooomu

* EdexTuBHE BUKOPUCTAHHS MTpoLIECcCOpa!

banancye 3amaui AMHAMIYHO MIXK TIOTOKaMH, TAPaHTYE, 110 HEMAE MPOCTOIO.

e Minimi3aiis KOHQIIKTIB:

KoskeH moTik B ocHOBHOMY 00po0iisie cBoto uepry (LIFO), o 3Mennrye KOH(UTKTH i1 9ac JOCTYIy IO CHUTBHUX PECYPCIB.

* MacmraboBana napanenbHICTh:

[Tin wac cTBOpeHHsS MiA3aAad BOHMU PO3MOJUISIIOTHCS OUIBII PIBHOMIPHO MK TMOTOKAaMH, IO JO3BOJSE MOKPAIIUTH MaciiTaOyBaHHS Ha

OararosiiepHUX CUCTEMAX.

* IlokpaieHHs JOKaabHOCTI IaM’sITi:

JlokanbHi 3ama4i 00poOsiroThest y mopsiaky LIFO, mo mokpariye TokabHICTh Kenry mam’siTi (OCKUTBKH MOWHO CTBOPEHI 3aj1a4i CKOpIIIe 3a Bce

11e mepeOyBaroTh y IaM’sTi).

Oomerrcennn ancopummy Kpaoixcku pooomu

e Burpartu Ha KpaAKKy 3a1a4:

Kpanixkka 3agay CripyuMHsi€ I€BHI BUTPATH, OCKIJIbKUA MOTOKY HEOOXIIHO MEPEBIPATH YEPIW 1HIIMX MOTOKIB. SKIIO 3aHanTo O6arato MOTOKIB

MPOCTOIOIOTh, MPOIYKTUBHICTD MaJla€ Yepe3 HAMIUIIKOBY KIJIbKICTh ONepallii KpaaiKKu 3ajay.

* I'paHynsIpHICTb 3a/1a4:

Skuro 3amadi 3aHaATO Maii (IpiOHO3EPHUCTI), TOTOKM MOXYTh BUTpayaTh HAJATO OaraTo 4acy Ha KpaJIikKKy 3a7ad 3aMicTh iX BHKOHAHHS, IO

NPU3BOAUTH /10 HEE(HEKTUBHOCTI.

+ SIkuro 3amavi 3aHaATO BEJUKI (IpyOO3EpHHCTI), MOKEe BUHUKHYTH JTUCOAJIAHC HABAHTAXXCHHS, OCKIJIbKU BEJIMKI 3a7a4l HE pO30MBalOTHCS Ha
MEHII1 YaCTHUHU JIJIS1 PO3MOILITY MIK TOTOKaMH.

* BurpaTu Ha CHHXpOHI3ALliIO:

public class SumTask extends RecursiveTask<Long> {
private int[] array;
private int start;
private int end;
private static final int THRESHOLD = 10_000;
public SumTask(int[] array, int start, int end) {
this.array = array;
this.start = start;
this.end = end;

}

@Override
protected Long compute() {
if (end - start <= THRESHOLD) {
long sum =0;
for (inti = start; i < end; i++) {
sum += array[i];
}

return sum;

}

int middle = (start + end) / 2;

SumTask leftTask = new SumTask(array, start, middle);
SumTask rightTask = new SumTask(array, middle, end);
leftTask.fork();

long rightResult = rightTask.compute();

long leftResult = leftTask.join();

return leftResult + rightResult;

THRESHOLD - 3miHHa THRESHOLD BM3Ha4vag, KoM cymy cermeHTa cnig obumncnoBatm
6e3nocepegHbO 3aMicTb il noganblworo po3butTa. Y ubOMy NpuUKNagi noporose
3Ha4yeHHA ctaHosuTb 10 000.

SumTask — ue cneuianbHUM Knac, AKuKM po3wunptoe RecursiveTask<Long>, wo6
po36UTK 3a4a4y NiACYMOBYBaHHA MAacMBY Ha MeHLWi Nig3aaadi.

AKWO po3mip cermeHTa macuBy AocuTb Manni (meHwui 3a THRESHOLD — y ubomy
Bunaaky 10 000), cyma obumcntoeTbea 6e3nocepesHbo 3a Aonomoroto uuknay for.

B iHWOMY BMNaaKy CermeHT AINNTbCA HaBMiA | CTBOPIOIOTLCA ABI Nig3anadi:

leftTask 06pobasie nepwy nonoBuHy cermeHTa. rightTask o6bpobnsie apyry nonoBuHy
CermeHTa.

MapanenbHe BMKOHaAHHA: MeTton fork() 3anmyckae niBe 3aBAaHHA aCUMHXPOHHO B
OKpemomy noTou,.

MeTtopg, compute() 0bpobnsie noTpibHe 3aBAaHHA B NOTOYHOMY noTtoui. MeToz, join()
OYiKYE Ha pe3ynbTaT MiBoi nia3agadvi. O6'eaHaHHA pe3ynbraTiB: Pe3ynbraTy NiBOro
(leftResult) i npasoro (rightResult) 3aBgaHb goaatoTbCA pa3om, WOO oTpUMaTh cymy

414 NOTOYHOIro CermeHTa.

Knac ForkJoinPool macmimye meToau kinacy AbstractExecutorService

Meton

Onwuc

ForkJoinPool()

Cteoptoe ForkJoinPool i3 mapanemizmom, pieaum Runtime.availableProcessors(),
BUKOPHUCTOBYIOUM (aOpHKy MOTOKIB 3a 3aMOBUyBaHHsM, 0e3 UncaughtExceptionHandler i
HeacUHXpOHHHH pexxkum 00poOku LIFO.

ForkJoinPool(int parallelism)

CrBoproe ForkJoinPool i3 3a3HaueHnM piBHeM mapasenizmy, pabpHKoIO MOTOKIB 32
3aMoBuyBaHH:sIM, O0e3 UncaughtExceptionHandler i HeacHHXpOHHUM PEKUMOM 00POOKH
LIFO.

ForkJoinPool(int parallelism, ForkJoinPool.F

orkJoinWorkerThreadFactory factory, Thre
ad.UncaughtExceptionHandler handler,
boolean asyncMode)

KoHcTpykTop cTBOpIo€e exk3emiuisap kinacy FOorkJoinPool, B sikuit BKJIFOUEHO KiBKICTh MOTOKIB,
sKa TOPIBHIOE KUIBKOCTI MOTOKIB «SIApay, sIK1 JOCTYITHI IPYU BUKOHAHHI TPOTpaMHu.
MAX_CAP — koHcTaHTa, i3 3Ha4eHHAM . K110 BCl TOTOKH «sApa» 3alHSITI, TOI
MIPUHANMHI OJIUH MOTIK OyJie CTBOPEHO.

Yac npoTarom sikoro moTik Moxke Oyau 6e3 3a/1adi 1 «He 3a0upaTu» 3 4yxoi uepru 60m mnepen
THM SIK B1H

Yepra Tumy WorkQueue cTBoproeThesi B KOHCTPYKTOPI, 11 pO3Mip BU3HAYAETHCS 3AJICHKHO BiJl
KUIBKOCTI TTOTOKIB 1 TUITY 3a/1a4 B ITYJIL.

ForkJoinPool.commonPool();

BukiukaeTbes 3 KOHCTpYKTOpY Kitacy FOrkJoinPool mist crBopenHs «3arajibHOro» myiy 3
napamMeTpamu:

Async Mode = True — 3agaui Takoro myJ1y BUKOHYIOTLCS aSynchronous

Uncaught Exception Handler — rmy; He Bu3Haua€e OKpeMUX BUHATKOBUX CUTYaIlil

public final ForkJoinTask<V> fork()

Jlonae 3aa4y y 4epry mysy, sSKIIo B 4€PrH € Miclie, SKIIOo Hi — TOAl A0/a€ 3a1a4y 110
3aranpHOI yepru (shared queue)

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#ForkJoinPool--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#ForkJoinPool-int-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#ForkJoinPool-int-java.util.concurrent.ForkJoinPool.ForkJoinWorkerThreadFactory-java.lang.Thread.UncaughtExceptionHandler-boolean-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ForkJoinWorkerThreadFactory.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.UncaughtExceptionHandler.html

public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false,
0, MAX_CAP, 1, null, DEFAULT _KEEPALIVE, TimeUnit.MILLISECONDS);

Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors())

e mepiuuii mapamMeTp KOHCTPYKTOPA, SKU BU3HAYAE LIJIbOBY KIIbKICTh MOTOKIB ('mapaienizm"), 10 BUKOPHUCTOBYIOTHCS
TyJIOM.

Runtime.getRuntime().availableProcessors():

[ToBepTae KUIBKICTh JOCTYITHUX MpoIiecopiB (a0o sjiep) Ha MalInHi, 16 BAKOHYETHCS IPOTPAMHUN KO/,

[le mo3BoIsiE alanTyBaTH MyJI MOTOKIB JI0 allapAaTHUX MOXKJIMBOCTEN CUCTEMHU.

Math.min(MAX_CAP, ...):

VYpazi o0OMekeHHS arapaTHOTO CepeIOBUIA, MAKCUMaJIbHA KUJIBKICTh TOTOKIB HE Moxke nepeBuniryBatdi MAX CAP — 1ie
3HAUCHHS BH3HAUYCHE KJIACOM 1 3a3BHUYai JopiBHIOE 32767.

Hanpuknan:

Sxmo y Bamtiid cucteMi 8 siaep, availableProcessors() mosepse 8.

Sxmo y cucremi 6inbmre 32 767 suep (1ie, MpakTUIHO, JTUIIE TEOPESTUIHUIN BHUITAJIOK), peajbHa KUIBKICTh IIOTOKIB Oy/e
oomexxena MAX_CAP = 32767 noToxis.

Ocb sIK BUIJISIAA€ TUIIOBA JIOTIKA:

Sxmo nocrymHo 8 suep: Math.min(32767, 8) = 8.

Sxmo nocrymHo 32 768 snep: Math.min(32767, 32768) = 32767.

defaultForkJoinWorkerThreadFactory - Ileit mapameTp Bu3Hadae GpaOpUKy IMOTOKIB, SIKa BIAMOBIIA€ 32 CTBOPEHHS HOBUX ITOTOKIB Y ITYII.
Bomna 3a6e3mneuye cTBOpeHHs cTaHAapTHUX MOTOKIB Thiy ForkJoinWorkerThread mst myay.
SIK110 HEOOX1IHO CTBOPIOBATH CIICI[iaTi30BaHi MOTOKH 3 JOJATKOBOIO JIOTIKOIO, B MOJKETE IepeaaTu cBoro peanizamiro ForkJoinWorkerThreadFactory.

public static class CustomForklJoinThreadFactory implements ForkJoinPool.ForkJoinWorkerThreadFactory {

private final int maxThreads;
private int createdThreads = 0; // Counter to track the number of created threads

public CustomForkJoinThreadFactory(int maxThreads) {
this.maxThreads = maxThreads;

}

@OQverride
public synchronized ForkJoinWorkerThread newThread(ForkJoinPool pool) {
if (createdThreads >= maxThreads) {
throw new lllegalStateException("Exceeded maximum number of threads: " + maxThreads);
}
createdThreads++;
return new CustomForkJoinWorkerThread(pool);

}

public ForklJoinPool(int parallelism) {
this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
0, MAX_CAP, 1, null, DEFAULT _KEEPALIVE, TimeUnit.MILLISECONDS);

}

NIEPIIHMHA MapaMeTp KOHCTPYKTOpA, IKMi BU3HAYA€E IIILOBY KiUTbKICTh OTOKIB (''mapanenizm’),

public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode) {
this(parallelism, factory, handler, asyncMode,
0, MAX_CAP, 1, null, DEFAULT _KEEPALIVE, TimeUnit.MILLISECONDS);

Knac ForkJoinPool macmimye meToau kinacy AbstractExecutorService

Meton Ormuc

ForkJoinPool.commonPool(); BuknukaeThes 3 KOHCTpYKTOpY Kitacy ForkJoinPool mist ctBopenns
«3arajbHOTOY ITyJTy 3 TTapaMeTPaMH:

Async Mode = True — 3agadi Takoro IyJTy BUKOHYIOTbCS aSynchronous
Uncaught Exception Handler — my;n He Bu3Hauae OKpeMHUX BHHSITKOBHX
CUTYyallli

public void [Himiroe BUKOHAHHS 3aBaaHHsg Tumy ForkJoinTask

execute(ForkJoinTask<?> task) {
Objects.requireNonNull(task);
poolSubmit(true, task);

}

public final ForkJoinTask<V> fork() | Jlomae 3amauy y uepry myiy, SIKIIIO B YEPTH € MicCIle, KO Hi — TOI
JoJa€ 3ajady A0 3arajabHoi yepru (Shared queue)

Knac ForkJoinTask — aOcrpaktHuii kimac Uit ommcy o00'€KTy «3aaada», sKa

BUKOHYBatuMeTbcs B FOrkJoinPool.

3amavya, moynMHAEThCS BHUKOHYBaTuCh B FOrkJoinPool, sk Tinmbku i1 HamgicaaHO METOIOM

submit(). SIkmo 3agaua HAJACWIIAETBCS TIEPIIOID, TOMI BHUKOPHUCTOBYIOTH METOJ

ForkJoinPool.commonPool() abo ForkJoinTask moxe Oytu Buxonana B ForkJoinPool,

TIIBKU BHKIUKOM 2X MeToxiB — fork(); join().

v Mertog fork() — opranizoBye aCHHXpOHHE BUKOHAHHS ITi1-3a/1a4;

v' Merox join() — He BMKOHYETHCS JOKH, HE OTPUMAHO BIIIOBiIHI pe3ylbTaTd 3ajadi.
Takum unHOM MeTox J0in() € amanorom Future.get().

Crarycu 3agaudi: iISDone() — BuKoHaHO, aji¢ BKJIIOYAE BUMAA0K, KOJIH 3a]1a9y «BlIKIMKAHOY

(cancelled).

v isCompletedNormally() - Bukonaso, 6€3 BUHUKHEHHS 0COOIMBHMX CHTYaIIii.

v' isCancelled - Bkirouae Bumagok, koiau 3amaudy «Bigknmukano» (cancelled).

v isCompletedAbnormally - Bkimrouae Bumazxu, Koim 3agady «Bigkarkasoy» (cancelled)

a00 ITOMMJIKA MMPU BUKOHAHH1 OOYHCIICHb.

POOLSUBMIT

Submitter Mask

ABNORMAL

THROWN

UNCOMPENSATE

awaitDone(RAN, INTERRUFTIELE, TIMED)

Tunu 3a0au na ocnoei ForkJoinTask

ForkJoinTask Mae gBOX cTaHIApTHUX JOYiIPHIX KJIACIB, SIKI CIIPOIIYIOThH pPeali3alliio 3aBIaHb.

RecursiveTask<V>:

BHKOPUCTOBY€EThCS JIs 3aBAaHb, SKi IOBEPTAIOTh pe3yabTar (3 ThioM V).

[TimxXoauTh a1 po3paxyHKIB, pe3yabTaTOM SKHUX €, HalPpUKIIaa, cyMa, J0OyTOK, MaKCUMaJIbHE 3HAYCHHS TOIIIO.
RecursiveAction:

BukopucToBy€eThCs 1Is 3a]1a4, K1 HE IIOBEPTAIOTh PE3yJIbTaT.

[ligxonuTh 11 3a7ad4, MOB'SI3aHUX 3 ONEpallisiMU, SKi BIUIMBAIOThH JIMIIE HA 30BHIIIHI PECYpPCH, HAIPUKJIaJ, COPTYBaHHS

MAacCHBY.

ForkJoinTask

public final v join()
public final ForkJoinTask=V:= fork()

RecursiveTask - RecursiveAction
protected abstract V compute() protected abstract V compute()
p“bt“ctﬂr:ja'__“" EI'EtR?WRES“”[-’_I public final void getRawResult()
prplecied inal doledn execd protected final boolean exec()

public final VV get() throws InterruptedException, ExecutionException {
int stat = status;
int s = ((stat < 0) ? stat :
(Thread.interrupted()) ? ABNORMAL :
awaitDone(true, OL));
if (s == ABNORMAL)
throw new InterruptedException();
else if ((s & ABNORMAL) '=0)
reportException(true);
return getRawResult();

}

BUKOPHUCTOBYETHCS JJIsl OTPUMAHHS pe3y/IbTaTy BUKOHAHHSI 3aBJaHHs, 1110 00pooserscs y ForkJoinPool.

get() 6;oKyeThCsI, IOKH 3aBaHHs HE 3aBEPIIUTHCS (SKIIIO BOHO II¢ BUKOHYETHCS).

SIK1110 3aBIaHHS 3aBEPIIMIIOCS MOMIJIKOI0 abo OyIto mepepBane, MeToa reHepye BuHsATok (InterruptedException abo ExecutionException).
SIK1110 3aBIaHHS 3aBEPIICHO YCIIIIHO, METOJI TOBEPTAE OOUNCIICHUH PE3YIIbTAT.

[Tose status y ForkJoinTask Bu3Havae cran (craryc) BUKOHaHHS 3aBAaHHs. CTaHH MOXKYTh OyTH HACTYITHUMHU:

NEW (3nauenns > 0): 3aBaaHHs 11i¢ HE 3aBEpIIICHE.

DONE (3nauenns < 0): 3aBmaHHs 3aBepIIICHE.

ABNORMAL.: 3aBnanss 3aBepIImiocst IOMUIKOI0 abo Oy10 ckacoBaHe.

Sxkmo stat < 0: 3aBaaHHs 3aBEpIICHO, | MU BUKOPHUCTOBYEMO CTaTyC, SIKHH YK€ BCTaHOBJICHO.

Sxmo Thread.interrupted() moseprae true:

[Torounwuii moTiK BUKIMKY OyB repepBanuii (mepesipka Thread.interrupted()).

Cmamyc 3aBnanns BcTaHOBIMIOEThCS B ABNORMAL, ockinibku mepepBaHuii MOTIK 03HAYAE, 110 3aB/IaHHS HE MOXKe OyTH KOPEKTHO 3aBEPIIICHO.
V Beix iHIIUX BUMaAKax Oyne BUKIMKaHWN mpuBaTHUN Meto awaitDone(true, OL), sikuit 6J10KyeThCs 10 MOMEHTY 3aBEPIIICHHS 3aBIaHHS.

@Override
public State state() {
int s = status;
return (s >= 0) ? State.RUNNING :
((s & (DONE | ABNORMAL)) == DONE) ? State.SUCCESS:
((s & (ABNORMAL | THROWN)) == (ABNORMAL | THROWN)) ? State.FAILED
State.CANCELLED;

public final V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
long nanos = unit.toNanos(timeout);
int stat = status;
int s = ((stat < 0) ? stat :
(Thread.interrupted()) ? ABNORMAL :
(nanos<=0L)?0:
awaitDone(true, (System.nanoTime() + nanos) | 1L));
if (s == ABNORMAL)
throw new InterruptedException();
else if (s >=0)
throw new TimeoutException();
else if ((s & ABNORMAL) = 0)
reportException(true);
return getRawResult();

public static int getQueuedTaskCount() {
Thread t; ForkloinPool.WorkQueue q;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
g = ((ForkloinWorkerThread)t).workQueue;
else
g = ForkJoinPool.commonQueue();
return (g == null) ? 0 : g.queueSize();

}

Meton getQueuedTaskCount(), mo Hanexuts kinacy ForkJoinTask, BUKOpHUCTOBY€EThCS I OTPUMaHHS KUTBKOCTI 3a71a9 y
4ep3i MOTOYHOTO MOTOKY B KOHTEeKCTI ForkJoinPool.

Cro4arky OTpHMY€EThCS ITOTOYHUH MOTIK 3a moromororo Thread.currentThread().

[TepeBipsieThbCs, UM € MOTOYHMM MOTIK ek3emInisipoM ForkJoinWorkerThread:

[Toroku Ty ForkJoinWorkerThread xepyrotscst ForkJoinPool i marots criemianeHy uepry 3aBmanb WOrkQueue.

[eit Tiin moToKiB cTBOproeThes ForkJoinPool cnenianbsHo 1j1s BUKOHAHHS 3aBJIaHb.

Sxio norouHuii moTik € yactunoro ForkJoinPool (to6to € ForkJoinWorkerThread), meron orpumye uepry 3aBaHb
(workQueue) mi1s mporo MmoOTOKY.

SIKIIIO OTOYHMIM MOTIK He € yacTrHoro ForkJoinPool (rampukan, e moTik main abo 3BUYaiiHUM MTOTIK), METO.I
BUKOPHCTOBYE 3aranbHy yepry (ForkJoinPool.commonQueue()).

CribHa gepra (CommonQueue) HaJIeKHUTh JI0 /Iy 3arajJlbHOro BUKOpHUCTaHHS (COMMONPOool), 1¢ BUKOHYIOThCS 3aBAaHHS
0e3 IPHB'SI3KH 10 KOHKPETHOTO ITOTOKY.

public final ForkJoinTask<V> fork() {
Thread t;
ForkJoinWorkerThread wt;
ForkJoinPool p;
ForkJoinPool.WorkQueue g;
boolean internal;
if (internal =
(t = Thread.currentThread()) instanceof
ForkJoinWorkerThread) {
g = (wt = (ForkloinWorkerThread)t).workQueue;

p = wt.pool;
}
else

a=(p=

ForkJoinPool.common).externalSubmissionQueue();
g.push(this, p, internal);
return this;

}

Thread t = Thread.currentThread():

OTpumy€ NOTOYHUM MOTIK, SIKUH BUKIIUKAE METO/I.
internal = t instanceof ForkJoinWorkerThread:
[lepeBipsie, UM BUKJIUKAHUNA METOJI TTOTOKOM, SIKHUI
e uyactunoro ForkJoinPool (to6to, uyum BiH €
o0'ektoM kiacy ForkJoinWorkerThread).

SKI0 BUKJIMK HAJIXOJAUTh 13 BHYTPIIIHBOTO MOTOKY
ForkJoinWorkerThread, Toni:

3aBAaHHs JOMAETHCA y BJACHY JIOKAJIbHY YEpry
(workQueue) 1150ro IMOTOKY.

[le onTuMi3zye BUKOHAaHHS, OCKIJIbKH 3aBJaHHA,
HMOBIPHO, BUKOHYBAaTUMEThCS IIUM K€ ITOTOKOM, HE
CTBOPIOIOYM JIOJATKOBUX BHUTpaT Ha Iepeaady
3aBJIaHHS.

Sxmo motik He € ForkJoinWorkerThread (Tto6to
BUKJIMK "330BHI1"), O3Hayae, 110 3aBJaHHS
3allyCKA€ThCS 13 30BHIIIHBOTO CEepeAoBHINA 1 Oye
JI0JIAHO J10 30BHIIIHBOI Yepru (J01aTKOBa yMOBA).

@Override
public V resultNow() {
int s = status;
if ((s & DONE) == 0)
throw new lllegalStateException("Task has not completed");
if (s & ABNORMAL) '=0) {
if ((s & THROWN) !=0)
throw new lllegalStateException("Task completed with exception");
else
throw new lllegalStateException("Task was cancelled");

}

return getRawResult();

}

BuKkopuctoBy€eTbca Ans HebAOKyo4Oro 4ocTyny A0 pe3ynbTaTy 3aBAaHHSA, HanpuKkaaa, Ana nepioAnYHOro onmnTyBaHHA
abo nepeBipKH

ForkJoinPool pool = new ForklJoinPool();
SimpleSum task = new SimpleSum(1, 10_000);
pool.execute(task);
try {
while (!task.isDone()) {
System.out.printIn("Waiting for task to complete...");
Thread.sleep(100);
}
int result = task.resultNow(); // OTpumye pe3ynbTaT HEramHo
System.out.printIn("Sum result: " + result);
} catch (lllegalStateException | InterruptedException e) {
e.printStackTrace();
}

pool.shutdown();

protected static ForkJoinTask<?> peekNextLocalTask() {
Thread t; ForkloinPool.WorkQueue q;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
g = ((ForkloinWorkerThread)t).workQueue;
else
g = ForkJoinPool.commonQueue();
return (g == null) ? null : q.peek();

}

Sxmro motounuit motik ForkJoinWorkerThread, meTon oTpumye #ioro nokanpHy 4epry 3aBaaHb depes mojie WorkQueue.
JlokanbHa 4yepra 3aBAaHb - 1€ CTPYKTypa JaHUX, SKa BUKOPHUCTOBYETHCS JJISI BUKOHAHHS 3aBJIaHb MTOTOKOM Y TIPHHITUII
LIFO (Last In, First Out): ocTanHi# qogaHMH €IEeMEHT Oy/ie BUKOHAHHUM TICPIIFIM.

Axmo norounuii nmotik He € ForkJoinWorkerThread (mampukiazn, motik main a6o Oyab-sSKWil MOTIK, HE IOB'S3aHUM 3
ForkJoinPool), meron 3amicTh JOKanmpbHOI Yeprd 3BEPTAETHCSA IO CIUJIBHOI YeprHW 3aBaaHb myimy. commonQueue().

commonQueue - 11e yepra 3aBJaHb JJIsl aCHHXPOHHUX 3aB/IaHb Y PAMKax 3arajbHOro MyJ1y MOTOKIB.

BryTpimmiit Bukiauk (ForkJoinWorkerThread):

Sxmo 3aBmaanHs BignpasiseTses 10 FOrkJoinPool 3 BHyTpitmHROr0 po60Y0ro MOTOKY:
3aBIaHHS JOJIA€THCA JI0 JOKAJIBHO1 YEPId, aCOIIMOBAHOI 3 IIUM ITOTOKOM.

Ile mpuCKOprO€ BUKOHAHHS, OCKUIBKM 3aBIaHHS 3aJUIIMTLCS ' JIOKAJbHUM' [JIS I[bOTO
notoky 3a npuHuunoMm LIFO.

3oBHimHIA Bukimk (He ForkJoinWorkerThread):

Sxmo fork() BukaukaeTbcs 3BUYaiiHUM ITOTOKOM (HAIIpUKJIA, Main), 3aBIaHHS JT0JAa€ThC
710 30BHIIIHBOI CIIJILHOI YEPIH.
[Toroxu 3 ForkJoinPool 3MoxxyTh 3a0uparu 3aBIaHHS 3 ITi€T YSPTH.

public <T> T invoke(ForkJoinTask<T> task) {
Objects.requireNonNull(task);
poolSubmit(true, task);
try {
return task.join();
} catch (RuntimeException | Error unchecked) {
throw unchecked;
} catch (Exception checked) {
throw new RuntimeException(checked);

Merton invoke(ForkJoinTask<T> task) e wactunoro kmacy ForkJoinPool y
Java. BiH BHKOpPHUCTOBYETHCS JUIsl CUHXPOHHO20 GUKOHAHHA 3A60AHHA 6
mencax ForkJoinPool. Ile o3nauae, wo memoo 3anyckae eukoHawHs
3a60aHHA | ON0KYyeEmMbCA 00 mux nip, NOKU 3A60AHHA He 3A6ePUIUMbCA,
noseepmarouu pe3ynomam eUKOHAHHA.

Merton npuiimae 00'exT Tumy FOrkJoinTask<T> a1 BUKOHAHHS.

3aBnaHHs NepeaaeThes B My uepe3 poolSubmit(true, task).

Jami task.join() BUKOpHUCTOBYETHCS AJIs1 OUiIKYBaHHS 3aBEPILICHHS 3aBIaHHS 1
OTPUMaHHS PE3yJbTaTy.

Y pa3si BUHUKHEHHS BHUHSTKIB BOHHU OOpOOJSIOTHCS 1 TOBTOPHO
BUKHJIAIOTHCS.

poolSubmit — e BHyTpimHINA MeTOn, siKUil nonae 3apaanHs task mo mymy
ForkJoinPool ans BukoHaHHS.

[Tapamerp true Bkasye, IO L€ aCHHXPOHHE BUKOHaHH:A. lle cranpapTHuUii
cnoci6 juts 3amycky 3aBaanb y ForkJoinPool.

MexanizM poboTu:

3apnanHs jgomaeThes o 4yepru motokiB ForkJoinWorkerThread (micueBoi
a00 CHIBbHOI Yepry B Myi).

[Toroxwu 3 ForkJoinPool 3abupatots 11e 3aBaaHHs 3 4Yepru AJs1 BUKOHAHHS.
Ilefi eram € MyCKOBUM MEXaHI3MOM, SKHIl TapaHTye, IIO 3aBIaHHsA
3aIyCKa€eThCs B MyJTi Oe3M0oCcepeIHbo 3 METo Ty INVOKe.

public void execute(ForkJoinTask<?> task) {
Objects.requireNonNull(task);
poolSubmit(true, task);

BMKOPUCTOBYETLCA AN1A aCUHXPOHHOIrO0 BUKOHAHHA
3aBAaHb.

He noBepTae pe3ynbraT 6be3nocepeqHbO.
MiaxoanTb AnA 3asAaHb Y GOHOBOMY PEXMMI.

TuUn BUKOHaHHA ACHHXpOHHO CUHXpOHHO (610KYE NOTIK A0
3aBepLUEeHHS 3aBfaHHS)

OuikyBaHHSA He yekae Yekae 3aBeplUeHHA 3aBOaHHA
3aBeplUeHHA 3aBJaHHSA

OTpuMaHHA pe3ynbTaTty He noBepTae pe3ynLTaT Hanpsmy. MoBepTae pesynbTaT NPsAMO
MoTpiGeH " task.join()" (MeToA * return®)

NMoeepTae “void® 3HayeHHAa Tuny “v* 3

*ForkJoinTask<V>"

BukopucTaHHA Konw 3aBgaHHA MOXe Konu Heo6xigHO OTpUMaTK

BUKOHyBaTUCA Y $OHOBOMY pe3ynbTaT HEeranmHo.
PEXUMI.

pool.execute(task); int resultinvoke = pool.invoke(taskForinvoke);
System.out.printIn("Main npoaosxye npautoBatn"); | System.out.printin("Pe3ynbTat:" + resultinvoke);
int resultExecute = task.join();

IIpuxnao peanizayii arcopummy « Copmysanns snummsmy» memooamu ForkJoinPool

11 eTam po3USICHHS €JIEMEHTIB 211 eTan po3UJICHHS €JIEMECHTIB

349 264 934 179 779 319 449 5519 204=

200 540 J7q Q3 c oo 310 7Sy coc oo odgd g 200 550z

17<26-—-3amuc-17; - -+ —+ -+ 20<44—zamuc-20+ —

549 2649 0349 I7c coooo 770 301 449 550 200=

03>26—s3anuc-26,+ —+ -+ —+ -+ 44<55—3ammc-449

1 93>26—sammc 26+ » o+ o o o
544 265 £ 939 17 © © © £ 77q 31I% © © £ 449 554 208=

Ly
Ly
i

54<93—s3ammuc-54.9

I/ 200 54 03c c oo oo 3] F7c o oo 209 441
17<31—3amuc-179
1 26<31—-3amHc-267

Ln
Ly
i
id

Ly
E=Y
i
Fa

F0cc Q3 JFc oo oo Fing 20 oo g4 q 531

i

209=

34>31—3anHc-317
J4=77—3anHc-54%
03=77—3anmHc- 777

179 269 319 544 779 030 ©c oo o o o 200 440
17<20—3ammc-17.9

Lan
L
i
[i]

20<26—-3amuc-209
26<44——samnc-207
31=44—3ammc-31"
54>44—3amHc-31Y

Kiracc — ParallelMergeSort, nacainye Big RecursiveTask, peanizye meton compute(), B sskomy Bukinkaemo fork() mis
nepeaadl 3ajadi Ha BUKOHAHHS B acMHXpoHHOMY FOrkJoin mymi Ta 3a HuM join() — mo0 modekatnch 00'€THAHOTO
pe3yNIbTaTy BUKOHAHUX ITiJT 3a/1a4.

java.util.concurrent.RecursiveTask<int[]> B MCTOI[i mal n() CTBOPHOEMO CK3CMILLAP ForkJoinPool Ta
ﬁﬁ Bukinkaemo Meron invoke (ParallelMergeSort) nms mouarky
ParallelNergesort BI./IKOHaH}.IH 3a7a4l IOYaTKOBOIO PIBHA (TOOTO HE PO3ALIECHOI Ha
mijg3azadi)
— array : int[] {readCnly}

+

ParallelMergeSort (array : int[])

H

compute (1 @ int[]

merge (left @ int[], right : int[]) : int[]

— 4

Lk wh e

o

o0

NMumaHHA

Y YoMy NONAra€ CyTb PEKYPCUBHOIO NiaxoAy A0 NapanenbHux obuncneHb y Java?

AKa igea anroputmy «po3ainntn — BMKoHatn — o6’eaHatn» (Divide and Conquer) y koHTeKcTi ForkJoinPool?
AKi nepeBarun BukopuctaHHa ForkJoinPool nopiBHAHO 3i 3BUYaHMMM Ny/1aMK MOTOKIB?

AKe npmn3HayeHHs abcTpakTHOro Knacy ForkJoinTask i AKi ocHOBHI meToAM BiH HaAa€e?

AK NPaLIOE aNTOPUTM KKpPaAiXKKM 3a4a4» i AKY pOab BiH Bigirpae B 6anaHCyBaHHI HaBaHTAXKEHHA MiXK
NoTOKamm?

LLlo Take noKkanbHa Yepra 3aaad y ForkJoinPool i AK BOHa BUKOPUCTOBYETHLCA Nif, 4aC BUKOHAHHA
PEKYPCMBHUX 3aBAAHL?

Y yomy nonArae BigMiHHICTb MixK Knacamu RecursiveTask<V> ta RecursiveAction?

Y AKkMx BMNaAKax AouinbHO BUKOpPMCTOBYBaTK RecursiveTask, a B AKMX — RecursiveAction?

AKe 3Ha4YeHHA Ma€e noporoBe 3HadyeHHA (threshold) y pekypcrBHUX 3a4a4ax i AK BOHO BN/IMBAE Ha
NPOAYKTUBHICTb?

10. AKi TMNOBI NOMMAKM BUHUKAIOTb NPU peanidaLii peKypcuBHUX NnapanenbHux anroputmis y ForkJoinPool?

