Jlekuisa 3. Tunu myJjiiB NOTOKIB.

Tema 1. Inrepdeiic EXxecutorService — OCHOBHI MeETOAW JIIi BHKOHAHHS Ta OYiKyBaHHS
3aBEpIIEHHS 33J1a4 y IyJI1 MOTOKIB.

Tema 2. Metoau BU3HAYEHHS CTaHy MOTOKY. MeTou 115l 3yIMUHKU MOTOKIB.

Tema 3. Tumm mymiB morokiB — FixedThreadPool, CachedThreadPool, ScheduledThreadPool,
SingleThreaded.

public class ThreadPoolExecutor extends AbstractExecutorService

ExecutorService, BUKOHy€ HaJiCclIaHE 3aBAaHHS 3a JOIOMOTOI0 OJHOTO a00 KiIbKOX 00’€JHAHUX ITOTOKIB, 3a3BHYAM
HaJIaIlITOBaHUX 3a JOIIOMOIo0 MeToIB (habpuku Executors.

[Iynu MOTOKIB BUPILIYIOTH JB1 pi3HI MPOOJIEMH: BOHU 3a3BHYail 3a0€3MEUYyIOTh MOKPAIICHY MPOIYKTUBHICTH IMij 4ac
BUKOHAHHS BEJIMKOI KUIBKOCTI aCMHXPOHHHUX 3aBJaHb 3aBISKHA 3MEHIICHHIO HAKJIAIHUX BUTpAT Ha BUKJIUK KOXKHOTO
3aBJaHHA, 1 BOHH 3a0e3IeuyroTh 3aco0M OOMEKeHHS Ta kepyBaHHS pecypcamu. Koxken ThreadPoolExecutor taxox

HNIATPUMYE AEsKYy 0a30By CTaTUCTUKY, HATPUKJIAJ] KUIbKICTh BUKOHAHUX 3aBJaHb.

ExecutorService KJIaC Hajae Oararo HacTporoBaHUX MapamerpiB. [Ipore mnporpamictaM pPEKOMEHIYETHCS
BUKOPHCTOBYBATH

meroau Executors.newCachedThreadPool() (meoOmexeHnii My MOTOKIB, 3 ABTOMATHYHHMM BIJTHOBJICHHSIM ITOTOKIB)
Executors.newFixedThreadPool(int) (rryx motokiB hikcoBaHOTO po3Mipy) i

Executors.newSingleThreadExecutor() (omma QoHOBHIA TOTIK), SKi IONEPEAHHO HAJAIITOBYIOTh ITApaMETPH IS

HaOUIBII MOIIMPEHUX CIIEHAP1l BUKOPUCTAHHS.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/AbstractExecutorService.html

KoHcmpykmopu

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue)

et koHCTpyKTOp cTBOpIoe HOoBMi ThreadPoolExecutor i3 3agaHuMu mapamMeTpamu:

corePoolSize: MinimasbHa KiJIbKICTh MMOTOKIB B myJi. Ek3ek'toTop 30epirae y myii Taky KUIbKICTh TIOTOKIB HaBiTh SIKIIIO BOHU MPOCTOIOOTh.

maximumPoolSize: MakcumaiibHa KiJIbKICTh MMOTOKIB, SIKI MOXKYTh OyTH aKTUBHI B OJIMH 1 TOM e Yac.

unit: Yacoswuii iHTepBalI, SKMi BU3HAYA€ OJMHUIIO BUMIpY 4acy s mapamerpa keepAliveTime.

workQueue: Uepra, B siKy 3a7a4i O4iKyIOTh Ha CBOE€ BUKOHAHHSI, KOJIU BC1 IIOTOKH 3aiHSITI.

ThreadFactory BiamoBijzae 3a cTBOpEHHsS HOBHMX IIOTOKIB, sKIIO HoTpiOHO, a RejectedExecutionHandler Bu3Havae moBemiHKY, KOJIM 3ajada HE MOXE OyTH
NpUAHATA 10 BUKOHAHHS (HAIPUKJIIAJI, KOJIM Yepra MOBHA 1 BCi MOTOKH 3aiHSATI).

Yac niompumku

keepAliveTime: Yac, npoTsroM siKOTo MOTOKH, SIKi IEPEBHUIIYIOTh KiJIbKiCTh COreP00lSize, MoKyTh MPOCTOIOBATH MEPII HiXK OyAyTh 3aBEPIIICHI.

SIKIIO IMys1 Hapasi MICTUTh O1IbIIE TOTOKIB, Hix COrePoolSize, HauIMIIKOBI OTOKH Oyjie MPUITMHEHO, SIKIIO BOHHM Oy/M HeakTHBHI Oinbiie, Hixk keepAliveTime
(muB. getKeepAliveTime(TimeUnit)).

Ile 3abe3neuye 3aci0 JjIs 3MEHIIIEHHS CIIOKMBAHHS PECYpCIB, KOJU MY/ HE BUKOPUCTOBYETHCS aKTHBHO. SIKIIO Mi3HIIIE My CTaHe OUIBII aKTUBHUM, OyTyTh
CTBOpEHI HOBI MOTOKH. Lleit mapaMeTp Takok MOYKHA THHAMIYHO 3MiHIOBAaTH 3a gormomororo Meroay setKeepAliveTime(long, TimeUnit).

Buxopucranns 3nadeHas Long.MAX_ VALUE TimeUnit. NANOSECONDS ¢akTnyHO BUMHKA€ HEAaKTHBHI IIOTOKH BiJ 3aBEpIICHHS pOOOTH 0 3aBEpPIICHHS
poboTH. 3a 3aMOBYYBaHHSIM TONITHKA MIATPUMKH aKTHBHOCTI 3aCTOCOBYEThCS JIMINIE TOMAI, KOJM TIOTOKIB Oiibiie HiK COrePoolSize. Ane wmeton
allowCoreThreadTimeOut(boolean) Takox MoO)XHa BHUKOPHCTOBYBATH JJI 3aCTOCYBaHHS Ili€l MOJITHKH TalM-ayTy J0 OCHOBHHX IOTOKIB, SIKIIO 3HAYEHHS

keepAliveTime He 1OpiBHIOE HYJIIO.

MNpuknag - ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit

unit, BlockingQueue<Runnable> workQueue)

public static void testExecutor(){
ThreadPoolExecutor executor = new ThreadPoolExecutor(
2, // corePoolSize
2, // maximumPoolSize
10, // keepAliveTime
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(2) // workQueue

for (inti=0;i<10;i++) {
int taskNo = i;
executor.execute(() -> {
System.out.printin("BukoHyeTbca 3agava: " + taskNo + " |
Thread.currentThread().getName());
});
}

executor.shutdown();

}

+

Myn NnoTokiB: Y Hac € 2 OCHOBHUX NOTOKMK (corePoolSize = 2).
MakcmmanbHUn po3mip nyny: Takox 2 (maximumPoolSize = 2), To6T0
HOBI MOTOKKU He CTBOPIOOTLCA NOHaA, corePoolSize.

Yepra 3apay: Bwukopuctosyetbca ArrayBlockingQueue<>(2), wo
O3Ha4ag, WO 2 3a4a4i MOXKYTb OYiKyBaTU B Yeps3i.

Lljo cmaHembcsa npu HaGnuwKy 3a0a4?

O4HOYACHO BMKOHYETLCA 2 3a4aui.

LLle 2 3a4a4i MOXKYTb YeKaTu B Yepsi.

IHWi 3apayi 6/NOKYHOTbCA, AOKM He 3BiIbHUTbCA Micue (TobTo HOBI
execute() 6yayTb yekaTmn).

OuikyeaHuli pe3ynomam euKoHaHH=A testExecutor()

Mepwa napa 3agay (0 i 1) noynHae BUKOHAHHA B ABOX NMOTOKax.
HactynHi 2 3apadi (2 i 3) goaatoTbes B vepry.

[lichAa 3aBeplweHHA nepwunx ABOX 3a4a4 BOHU 3BiIbHAKOTb MOTOKM, |
3a4a4i 2 i 3 NOYNHAOTb BUKOHAHHA.

LIMKN NOBTOPIOETLCA, AOKM BCi 3a4a4i He byayTb BUKOHaAHI.

LLlo 6yae, aKwo 36inbwmntn maximumPoolSize?

ThreadPoolExecutor aBromatuuHo peryiaroe posmip mnyay (getPoolSize()) siamoBimHO a0 Mex, BcraHoBieHHX COrePoolSize (mwms.
getCorePoolSize()) i maximumPoolSize (getMaximumPoolSize()).
Kosnu HOBe 3aBmanHs HajacuiaaeTbes B MeTon execute(Runnable) i 3amymieno meniire motokiB COrePoolSize, cTBoproeThcsi HOBHI MOTIK 11 OOPOOKH 3aImuTy,
HaBITh SIKIIO iHII PoOOYi MOTOKM HEaKTUBHI. SIKIO 3amyiieHo Oinblile MOTOKIB Hi COrePoolSize, ame menme Hixk maximumPoolSize, HoBuii motik Oyze
CTBOPEHO, JIHIIIE SIKIIO YePTy 3allOBHEHO.
BceranouBmin ogHakoBi COrePoolSize i maximumPoolSize, Bu cTBOproeTe myn TMOTOKIB ¢hikcoséanozo posmipy. BcraHoBmOOUM JUIs mapamerpa
maximumPoolSize ¢akruuno HeoOMexxeHe 3HaueHHs, Hanpukiaa Integer. MAX_VALUE, Bu 103BOJs€TE MyJly PO3MIIIYBaTH JOBUIBHY KiJIbKICTh OJJHOUACHUX
3aBJaHb. 3a3BUYall OCHOBHHMM 1 MaKCHUMaJbHUN PO3MIPH MyJy BCTAHOBJIIOIOTHCS JIMILE i YaCc CTBOPEHHS, aje iX TaKoX MOXKHA 3MIHIOBATH JUHAMIYHO 32
noromororo setCorePoolSize(int) i setMaximumPoolSize(int).
3a 3aMOBUYBAaHHSIM HaBiTh OCHOBHI NOTOKH CIIOYaTKy CTBOPIOIOTHCS Ta 3aITyCKAFOTHCS JIMIIE TOJI, KOJM HAIXOASATh HOBI 3aBIaHHS, aje IIeé MOXKHA JTUHAMIYHO
nepeBu3HavaTH 3a JonomMororo merony prestartCoreThread() ado prestartAllCoreThreads().
Hogi motoku cTBOpIOIOTHCS 3a qoromororo ThreadFactory. Skmio He Bka3aHo iHIe, BuUKopucToBYeThcsl Executors.defaultThreadFactory(), sikuit ctBoproe moTokH,
106 yci Oynm B Tiid camiii ThreadGroup i 3 ogaakosuM npiopurerom NORM_PRIORITY i cratycom He neMoHa.
Bu mooiceme 3minumu im’s nomoky, 2pyny Homoxy, npiopument, CHamyc 0emoHa nMowio.
Sxmo ThreadFactory He 3Moxe cTBOpUTH MOTIK Ha 3amnuTt, moBepraroun 3HadeHHs NUll i3 newThread, BukoHaBenb MPOIOBKUTE POOOTY, alie MOXKE HE MaTh 3MOTH
BUKOHATH >KOJHE 3aBnaHHs. [loTokwm moBuHHI MaTH J103Bi1 RuntimePermission "modifyThread"”. Slkmo po6oudi motoku abo iHII IMOTOKH, IO BUKOPHUCTOBYIOTh
yJ1, HE MalOTh I[LOTO JO3BOJY, CEPBIC MOXKE OyTH MOTIPIICHUI: 3MIHM KOH(DIrypaiii MOXXyTh HE BCTYIIUTH B CHIIy CBOE€YACHO, a MY 3aBEPIICHHS POOOTH MOXKeE

3aJINIIaTHUCA B CTaHi, Yy AKOMY HPUITMHCHHA MOXXIIMBE, aJIC HC 3aBCPILCHO.

KoHcmpykmopu

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
et KOHCTPYKTOp CXOXKHI Ha MOTIEPEAHIH, TPOTe 103BOJIsIE BKa3aTh BiacHuii RejectedExecutionHandler:

handler: O6poOHUK, sIKUiT BAKOPUCTOBYETHCS, KOJIM BUKOHAHHS 3a/1a4i BiIMOBJICHO (HANPUKJIIA, Yepe3 MePEBAHTAKCHHS YTy MOTOKIB).

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory
threadFactory)

Lleit koHCTPYKTOP 103BOJIsiE BKa3aryu BiacHuUi ThreadFactory - dabpuka, 1o BUKOPUCTOBYETHCS)11 CTBOPCHHS HOBHX ITOTOKIB.

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory
threadFactory, RejectedExecutionHandler handler)

I{e¥t KOHCTPYKTOP /A€ MOBHUU KOHTPOJIb HAJl yCiMa MapamMeTpaMu:

threadFactory: Yka3zana (abpuka 11 CTBOPEHHS HOBUX MTOTOKIB.

handler: Ykazauuii 00poOHHK BiIMOB BUKOHAHHS 3a7a4.

public static void testExecutorAbortPolicy()
{
ThreadPoolExecutor executor = new ThreadPoolExecutor(

2,
2,
10,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(1),

new ThreadPoolExecutor.AbortPolicy()

);

try {
for (inti=0;i<10;i++) {
int taskNumber =i;
executor.execute(() -> {
System.out.printin("Running task " + taskNumber);

// Simulate long-running task
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
1,
System.out.printin("Task " + taskNumber + " submitted successfully");
}
} catch (RejectedExecutionException e) {
System.err.printIn("Task submission rejected: " + e.getMessage());
} finally {
executor.shutdown();
}
}

Myn noTokKi.: Bce e 2 OCHOBHI
noToKu (corePoolSize =
2).MaKkcumanbHuUi po3mip nyny:
TakoX 2, TO6TO HOBi NOTOKM He
CTBOPIOIOTLCA NOHAA,
corePoolSize.Yepra 3agau: Tenep
TiNbKu 1 micue B uepsi
(ArrayBlockingQueue<>(1)).MonitTuka
Biamosu: AbortPolicy o3Hauvag, wo
AKLLO Yepra i BCi NOTOKM 3aMHATI, TO
HOBI 3agadi 6ygyTb BigxuneHi i
BUKNINYYTD
RejectedExecutionException.

IMpuknan - ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,

BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)

public class CustomCallerRunsPolicy implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
if (lexecutor.isShutdown()) {
System.out.printIn("Executing task in caller thread: " + Thread.currentThread().getName());
r.run(); // BUKoHyemo 3afayy B NOTOL, WO BUKAMKAB “execute()’
}
}
}

ThreadPoolExecutor executor = new ThreadPoolExecutor(

TimeUnit.SECONDS,

new ArrayBlockingQueue<>(2),
threadFactory,

new CustomCallerRunsPolicy()

);

for (inti=0;i<15; i++){
int taskNo = i;
executor.execute(() -> {
System.out.printIn("BukoHyeTbca 3agava: " + taskNo + " | " +
Thread.currentThread().getName());
1;
}

executor.shutdown();

}

ThreadPoolExecutor napameTpu:
corePoolSize = 2: cnoyaTtky
CTBOPIOETLCA 2 NOTOKMU.
maximumpPoolSize = 4: akw,o yepra
3anOBHEHA, A0AAI0TbCA We Ao 2
NOTOKIB.

keepAliveTime =5 cekyHA: AOAATKOBI
NOTOKM 3aBEpLUYIOTbCA Nicna 5
cekyHa 6e3 poboTu.

workQueue =
ArrayBlockingQueue<>(2): yepra 3 2
3a4a4amu.

KactomHuit ThreadFactory:
CTBOPIOE MOTOKM 3 iIMEHEM
CustomThread-ID.

CallerRunsPolicy sk
RejectedExecutionHandler:

AKWoO Yyepra nepenoBHeHa i HeMae
Bi/IbHOro NOTOKY, 3a4a4a
BUKOHYETbCA Y NOTOL BUK/INKY

[Mpuknan - ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,

BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)

public class CustomDiscardPolicy implements
RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor
executor) {
System.out.printIn("Task discarded: " + r.toString());
// 3aBAaHHA NPOCTO He A0Aa€TbCS, HIYOro He pobumo

}
}

ThreadPoolExecutor executor = new ThreadPoolExecutor(

TimeUnit.SECONDS,

new ArrayBlockingQueue<>(2),
threadFactory,

new CustomDiscardPolicy ()

);

for (inti=0;i<15; i++) {

int taskNo = i;
executor.execute(() -> {
System.out.printIn("BukoHyeTbcA 3agava: " + taskNo +" | " +

Thread.currentThread().getName());

N;
}

executor.shutdown();

1

ThreadPoolExecutor napametpu:
corePoolSize = 2: cnoyaTtky
CTBOPIOETLCA 2 NOTOKMU.
maximumpPoolSize = 4: akw,o yepra
3anOBHEHA, A0AAI0TbCA We Ao 2
NOTOKIB.

keepAliveTime =5 cekyHA: AOAATKOBI
NOTOKM 3aBEpLUYIOTbCA Nicna 5
cekyHa 6e3 poboTu.

workQueue =
ArrayBlockingQueue<>(2): yepra 3 2
3a4a4amu.

KactomHuit ThreadFactory:

Konn nyn noTokKiB i Yepra 3anoBHEHI,
HOBAa 3a4ava NPocTo
irHopyetbca.Hemae nomunok abo
BUHATKIB, a/ie € BTpaTa 3aga4y.MoxHa
A0AaTh noryBaHHA abo cneuiasnbHUM
06pOOHMUK.

ITpuknan - ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)

public static class CustomDiscardOldestPolicy implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
if (lexecutor.isShutdown()) {
Runnable oldestTask = executor.getQueue().poll(); // Buaanaemo HaicTapiwy 3agady
System.out.printIn("Discarding oldest task: " + (oldestTask != null ? oldestTask.toString() :
"None"));
executor.execute(r); // NMpobyemo e pa3 AoaaTv HOBY 3a4auy
}
}
}

ThreadPoolExecutor executor = new ThreadPoolExecutor(
2,
4,
5,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(2),
threadFactory,
new CustomDiscardOldestPolicy ()

);

for (inti=0;i<15;i++){
int taskNo = i;
executor.execute(() -> {
System.out.printin("BukoHyeTbca 3aaava: " + taskNo + " |
Thread.currentThread().getName());
1,
}

executor.shutdown();

}

n

+

ThreadPoolExecutor napameTpu:
corePoolSize = 2: cnoyaTtky
CTBOPIOETLCA 2 NOTOKM.
maximumPoolSize = 4: akwio yepra
3anNOBHEHa, A0Aal0TbCS We A0 2
NOTOKIB.

keepAliveTime =5 ceKyHA: 40AATKOBI
NOTOKK 3aBepLlyroTbcA nicna 5
cekyHp 6e3 pobotu.

workQueue =
ArrayBlockingQueue<>(2): yepra 3 2
3a4a4aMMm.

KacromHuu ThreadFactory:

AKwWwo yepra noBHa, bepemo
HaucTapiwy 3agauy (poll()) i
BMAANAEMO ii.l[1oTim we pas
npobyemo goaatu HOBY 3a4auy
(executor.execute(r);).AkwWwo executor
3aKPUTMIN — NPOCTO HIYOro He
pobumo.

Ilocmanoexa ¢ uepzy

byne-sixy uepry BlockingQueue mMoxxHa BUKOPUCTOBYBATH IS TIepeiadi Ta yTPUMaHHS HaJiCIIAHUX 3aBJIaHb.

Icuye mpu 3azanvni cmpamezii uepeu:

[Mpsimi mepemadi (Direct handoffs). Xopommm BuGopom 3a 3amoBuyBaHHSIM it poOodoi uepru € SynchronousQueue - cipo0a MOCTaBUTH 3aBIaHHS B
yepry Oyle HEBIAJOI0, SIKIIO OJCH MOTIK He OyAe HerailHO JAOCTYNHUU AJi1 HOro BUKOHAHHA, TOMY OyJe CTBOpEHO HOBHI MoTik. L{g momiTuka m03Bossie
YHUKHYTH OJIOKYBaHb IiJ] 4ac 0OpoOKM HaOOpIB 3amHTIB, SKI MOXKYTh MaTd BHYTPIIIHI 3ajexHOCTI. [Ipami mepenadi 3a3Bu4ail BUMaraloTh HEOOMEKEHUX
MaKCHUMaJIbHUX PO3MIpiB MYy, 00 YHUKHYTH BIIXWUJICHHS HOBHX MOJAHUX 3aBIaHb. Lle, y CBOIO 4epry, J0MycKae MOXKIMBICTh HEOOMEKEHOTO 3pOCTaHHS
MOTOKY, KOJIM KOMaHAH MPOJIOBXKYIOTh HAIXOAUTH B CEPEIHBOMY LIBU/IIIE, HI>K BOHU MOXKYTh OyTH 00pOoOIIeHI.

Heoomexeni uepru (Unbounded queues). Bukoprucranus HeoOMexeHoi uepru (Hampukian, LinkedBlockingQueue 6e3 momepeiHb0 BU3HAUECHOT EMHOCTI)
NpU3BE/E 10 OYIKyBaHHS HOBUX 3aBJaHb y 4Yep3i, KOJM BCi MOTOKH COrePoolSize 3aiinsaTi. Takum YuHOM, HIKOJIU HE OyJe CTBOPEHO OibIIEe TOTOKIB
corePoolSize. (Tomy 3nauenHs maximumPoolSize He mae koITHOTO PEKTY.)

HeoOmerxeHi uyepru MOXyTh OyTH JOIIIBHUMH, KOJMH KOXKHE 3aBJAaHHS € MOBHICTIO HE3aJEKHUM BiJ 1HIIWX, TOMY 3aBIaHHS HE MOXYTh BIUTUBATH Ha
BUKOHAHHS OJIHE OJTHOTO; HaNpHKJIaJ, Ha cepBepi BeO-cTOpiHOK. Xova 1el CTHIIb Yeprd MoXxe OyTH KOPUCHHM JUJIS 3I7aJKyBaHHS THMYACOBHUX CIAJIaxiB
3aMMTIB, BIH JIOITYCKA€ MOXKJIMBICTh HEOOMEKEHOTO 3pOCTaHHsI pOO0OYOi YEPrH, KOJIU KOMaHIU MPOJAOBKYIOTh HAIXOJAUTH B CEPEAHBOMY IIBUIIIE, HIXK BOHU

MOXYTb OyTH 00pOOJIEH].

MNpuknag - [psmi nmepenaqi (Direct handoffs)

ThreadPoolExecutor executor = new ThreadPoolExecutor(
2, I corePoolSize
4, /[l maximumPoolSize
60L, // keepAliveTime
TimeUnit.SECONDS, // unit of keepAliveTime
new SynchronousQueue<>(), // no capacity
new ThreadPoolExecutor.AbortPolicy() // Rejection policy that aborts

);

/I Introduce tasks
try {
for (inti=0;i<8;i++){
final int taskNumber = i;
System.out.printin("Submitting task " + taskNumber);
executor.execute(() -> {
try {
System.out.printIn("Running task " + taskNumber);
Thread.sleep(3000); // Make the thread busy
} catch (InterruptedException €) {
Thread.currentThread().interrupt();

}
1
}

} catch (RejectedExecutionException e) {
System.err.printIn("Task rejected: " + e.getMessage());

¥

executor.shutdown();

¥

Direct Handoffs (Mpamui
nepeaaBasibHUI MeXaHi3m)
3aBAaHHA He CTaBNAATbLCA B Uepry.
AKLLO € BiZIbHUI NOTIK, 3a4a4a
nepepacerbca 6esnocepeaHbO NoMy.
AKLWLO BCi NOTOKM 3aMHATI — 3aA4a4a
BiAXUNAETLCA
(RejectedExecutionException).

Oo0mexeni yeprm Bounded queues. OOmexena dyepra (mampuknazn, ArrayBlockingQueue) momomarae 3amo0irtu
BUCHAQ)KCHHIO PECYpPCIB MNPU BUKOPUCTAHHI 3 OOMEXKEHHMMH MAaKCUMAJIBHUMHM pO3MIpaMH Iyily, aje i1 Moxe OyTu
CKJIQ/IHIIIIE HAJIAIITYBAaTH Ta KOHTPOJIIOBATH. Po3Mipu yepru Ta MakCUMalibH1 pO3MIPH YTy MOXYTh OyTH 3aMiHEHI OAWH
Ha OJHOTO: BUKOPUCTAHHA BEIUMKUX 4YEepr 1 manux myaiB MiHiMi3ye BukopuctanHs LIII, pecypciB OC 1 BuTpatu Ha
MEPEMUKAHHS KOHTEKCTY, aje MOXE€ MPU3BECTH JO IITYYHO HU3BKOI MPOMYCKHOI 3AaTHOCTI. SIKIIO 3aBIaHHS 4YacTo
OJOKYIOThCS (HampUKJIad, SIKIIO BOHW MPUB’A3aHl 10 BBOAY-BHUBOJY), CUCTEMAa MOXE MaTH 3MOTY 3aIlJlaHyBaTH 4ac Jjist
OUIBIIOT KUIBKOCTI MOTOKIB, HIXK B JI03BOJIsiETEe. BUKOpUCTAHHSI MajMX 4Yepr, K MPaBWIO, MOTPEOy€e OLIBIIMX PO3MIPIB
nyJly, 1o cupusie 3aBaHTaxeHHto [I1, ane Moxke mpU3BECTH /10 HEMPUUHATHUX HAKJIAJHUX BUTPAT HA TUJIAHYBAaHHS, 1110

TAaKOX 3MCHIIYE€ IIPOITYCKHY 3I[aTHiCTI).

Binxuneni 3apnanns (Rejected tasks)

Hogi 3aBmanns, Hamicnani B Meroai execute(Runnable), Oyayrs Bigxmieni, koo EXecutor Oyme BHMMKHEHO, a Takok kKoun EXecutor BukopucToBye
0OMeXeH1 MeX1 K ISl MAaKCUMaJIbHUX TOTOKIB, TaK 1 JJIsI EMHOCTI poO04Oi uepru, i BIH HAaCUYCHUU. Y OyJb-IKOMY BUITQJKy METOJI EXECUte BUKIMKAE
meton RejectedExecutionHandler.rejectedExecution(Runnable, ThreadPoolExecutor) ceoro RejectedExecutionHandler.

HanaroTtbecs yoTupu nonepeaHb0 BU3SHAUEHI MOJITUKH OOPOOKHU

ThreadPoolExecutor.AbortPolicy 3a 3amoBuyBanHsM 00poOHMK kumae RejectedExecutionException wacy BUKOHAHHS IICIS BiAXHWJICHHS.
ThreadPoolExecutor.CallerRunsPolicy motik, skuii BUKIMKaE BHUKOHAHHS, caM 3alyckae 3aBaaHHsg. lle 3a0e3meuye mpocTHii MexXaHi3M KepyBaHHS
3BOPOTHHUM 3B’SI3KOM, SIKHI YIIOBUIBHIOE MIBUIKICTh HAJACHIAHHS HOBHMX 3aBJaHb.

ThreadPoolExecutor.DiscardPolicy 3aBnanusi, ske HEMOKJIHBO BUKOHATH, IIPOCTO BiIKHIA€THCA.

ThreadPoolExecutor.DiscardOldestPolicy, sixio BukoHaBeIb He BUMHKAETHCS, 3aBIaHHS Ha MOYAaTKy poO0YO0i Yepru BiAKUIAETHCS, a TIOTIM BUKOHYETHCS
IOBTOpHA CIIpo0a (sIKa 3HOBY MOJKE 3aBEPIIMTHCS MOMUIJIKOIO, CIPHYUHSIIOUH ITOBTOPCHHS). MoKHA BH3HAYATH Ta BUKOPHUCTOBYBATH IHIIN THIIH KJaciB
RejectedExecutionHandler. 1le BuMarae meBHOi 00epeKHOCTI, 0COOIMBO SKIIO MOJITHKH PO3POOJIEHO Il pOOOTH JIMIIE 3a MEBHOI IMOTYXXKHOCTI abo

MOJIITUKYU YEPTH.

import java.util.concurrent.*;

class CustomRejectedHandler implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
System.out.printIn("Task rejected: " + r.toString());

}
}

public class CustomRejectedTaskExecutor {
public static void main(String[] args) {
ThreadPoolExecutor executor = new ThreadPoolExecutor(
2,2, 10L, TimeUnit.SECONDS,
new ArrayBlockingQueue<>(2),
new CustomRejectedHandler()

);

for (inti=0;i<6;i++) {
int taskNo = i;
executor.execute(() -> {
System.out.printin("Executing task " + taskNo);
try { Thread.sleep(2000); } catch (InterruptedException e) { }
1
}

executor.shutdown();

3. Rejected Tasks (O6pobKa BiaxuneHux 3agay)
BukopucToByeTbCA KacTomHMIA RejectedExecutionHandler.
AKLWO 3a4a4a BiAXUNAETLCA, ii MOXHa:

BukoHaTtu B ocHoBHOMy noToui (CallerRunsPolicy).
Jlorysati / noBTOPUTH Mi3HiLe.

OuikyBaHa noBeAiHKa:

2 3aAaui BUKOHYIOTbCA 0APasy.

2 3apa4i YeKaloTb y uepsi.

HacTynHi 2 3apaui 6yayTb BiaxuneHi Ta 3anorosaHi KacromHum RejectedExecutionHandler.

public interface Executor

Executor — me iHTepdelic y makeTi java.util.concurrent, skuii BusHauae equnuii meton execute(), mpusHaueHui
JUIsl aCHHXPOHHOTO BUKOHAHHS 3a7a4. BiH € 0CHOBOIO /151 OaraTh0X MexaH13MIB KepyBaHHs IMOTOKaMH y Java.
OO0’exT, KUl BHKOHye HajiciaHi 3aBmaHHga Runnable. Ileit inTepdeiic 3abe3neduye crmocid BiAOKpPEMIICHHS
IOJIaHHS 3aBAaHHS BiJl MEXaHI3My BHUKOHAHHS KOYKHOTO 3aBJIaHHS, BKJIIOYAIOYH JI€Talli BUKOPUCTAHHS ITOTOKY,
IUTaHYBaHHS TOIIO. 3a3BHYail 3aMIiCTh SIBHOTO CTBOPEHHS ITOTOKIB BHKOPUCTOBY€EThcs Bukonasenpb. Hampukiran,
3amicTh Toro, mo6 Bukiaukaru New Thread(new(RunnableTask())).start() nis koxxHOro 3 HabOpy 3aBAaHb, BU
MOJKETEe BHUKOPHCTOBYBaTH. BHKOHaBellb BHKOHaBellb = anExecutor; executor.execute(nose RunnableTask1());
executor.execute(nose RunnableTask2());

Ocnogna ioea Executor

3amicTh TOro mOO HampsiMy cTBOproBatH 1 kepyBatu motokamu (Thread), imrepdeiic Executor mosBosmse
nepenaBaru 3aBaaHHg (Runnable) mist BUKOHAHHS creliadi3oBaHMM MeEXaHi3MaM, SIKi CaMOCTIHHO KepylOTh
IOTOKAMH.

Ilyn nomokie — 1e peKUM BUKOPUCTAHHS 00’ €IHAHOTO MOTOKY. CTBOPUBIIU MEBHY KIIBKICTh MOTOKIB, MOXKHA
MIJBUIIATH IIBUJKICTh BIAMOBIII CHUCTEMH, YTPUMYIOUM Il IMOTOKM B CTaHl roToBHOCTI. Ilicisi BHUKOpHCTaHHS

MOTOKIB BOHM TOBEPTAIOTHCA /10 MYy MOTOKIB. TakMM YUMHOM, JOCSATAE€THCS MOBTOPHE BUKOPUCTAHHS MOTOKY, IO
3MEHIIY€ CIIOKUBAHHSI CUCTEMHUX PECYPCIB.

[Tpuknan ctBopenHs 10 moTokis.

public class Main {
public static void main(String[] args) throws InterruptedException {
for (inti=0;i<10;i++) {
Thread mythread = new Thread(new SimpleTask());
mythread.start();

}

public class SimpleTask implements Runnable {
@Override

public void run(){

System.out.printin(Thread.currentThread().getName());
}

}

Java 014 Kodchoi 3a0aui cmeopiloe nomik i nicia 6UKOHAHHA 11020 3aKkpuesace (Shutdown).
Ilpoonema - bazamo mawmunHux pecypcie

Thread 0 Thread 1 Thread _n

ir each task create a new thread

W/

M

Piwennsa npoonemu — cmeopumu pool, saxuii exnrouamume nesny xinvkicmio nomokie. Hanpuxnao ons 1000 3a0au —
Maemo nyn 3 10 nomokie

Pool - 3 10ma notokamu - fixedThreadPool

1

create a pool

Thread 0 Thread 1 Thread _10

for 1000 tasks create a pooll

ITpuknan - Executors.newFixedThreadPool(10). 3amicme 1000 nomokie cmeopioomscs 10. s
BUKOHAHHS 3a0ayi NYJl YeKae noKu akutics 3 10mu nomokie cmane 6iibHull [nepeoac 1omy 3a0a4y Ha
suxonanns. Buxnuk service.shutdown() — iHiuiloe 3akpuTTA NOTOKIB.

public class Main {
public static void main(String[] args) throws InterruptedException {
ExecutorService service =
for (inti=0;i<1000; i++) {
service.execute(new SimpleTask());

}

service.shutdown();
}
public class SimpleTask implements Runnable {
@Override
public void run(){
System.out.printin(Thread.currentThread().getName());

}

}

Iepuwiuii mun nynis - FixedThreadPool

FixedThreadPool — po3mimye 3amaui m1s BukoHaHHS B «blocking queue», i ko)keH IOTIK BUKOHYE 2
orepalli: OTpUMarH 3a/1ady 3 Yepru; BUKOHATH 3aj7a4dy. SIKIO BC1 MOTOKA 3alHATI - MMyJ1 YeKa€ HA BUIbHUN
MOTIK.

x 0 >< x x \\r\‘\‘ ;‘-. " .
*FixedThreadPool: \\\‘.{\: Q

£ i ¥ i ¥

Thread 0 Thread 1 Thread _10

Ilepesazu
1) 3McHIICHHS CIOXKHMBAaHHS PECYpCiB. MYJIM IOTOKIB MOXKYTh 3MEHIIUTH CIIO)KMBAaHHS, BHUKIMKAHE CTBOPECHHSIM 1

3HUIIEHHSM MOTOKY, IIJISIXOM TOBTOPHOTO BUKOPUCTAHHS CTBOPEHUX IMOTOKIB.

2) TTokpalieHHs IIBUIKOCTI BUKOHAHHS 3aBaHb TIOTOKY.

3) IlokpalieHHS KEPOBAHOCTI IMOTOKAMHM: TOTOKH € JCPIUTHUMHU pecypcaMu, a HEOOMEKEHE CTBOPCHHS ITOTOKIB
CIIO)KMBAE€ CHUCTEMHI PECYpCH Ta 3HWXKYE CTAaOUIBHICTh cUCTeMH. [lylM MNOTOKIB MOXXKHAa BUKOPUCTOBYBATH IS
YHI()IKOBAaHOTO PO3IMOLITY, HAJAIITYBAHHS Ta MOHITOPHHTY.

Heooniku

Ak euznauumu neo0Xiony KiibKicmbs noOmokie?

Ooun i3 memoodie — ye eu3Hauamu KUIbKICMb NOMOKIE 3AN1EHCHO 6I0 «OOUUCTIOBATIBHUX) A0EDP 8 UEHMPANbHOMY
npoyecopi.

[Ipuxnan - Runtime.getRuntime().availableProcessors();

public class Main {
public static void main(String[] args) throws InterruptedException {

for (inti=0; i< 1000; i++) {
service.execute(new SimpleTask());

}
}

public class SimpleTask implements Runnable {
@Override
public void run(){
System.out.printin(Thread.currentThread().getName());

}

}

Takui Nigxig He npautoe, Konm barato 3agad Tmny - Input/Output.

Jlpyeuii mun nynie - CashedThreadPool

Piwenns npoonemu — cmeopumu P00l de3 3azoaneziov eusnauenoi xkinokocmi nomokie — CashedThreadPool.

Taxuii nyn mae Synchronous queue, ska pozpaxosana Ha 1 3ad0auy minoku. Kosicen paz xkonu nyn ompumye 3aoauy —
Ilyn wiykae na «einonuity nomik. Axugo éci nomoku «3aiuHaAmi», mooi nyj1 Cmeopro€ HOBUIL ROMIK i 000a€ 11020 00 Y.
Axwo 6 nyni € nomik, aAKuil He 6UKOHYE€ 3a0aui npomazom 60SEC —maxkuil nOmMiK 6UOANAEMBCA 3 NYITY.

_ ; CashedThreadPool

N

Thread 0 Thread 1 : Thread _new :

ym ofYUCIioE YU &
SITLHLUL OTNE QR
SUKOHEHHT 250841,
RELUD HI, M0 CIMSCOE |
dodae momix 4o myImy

Ilpuxnao — kinbkicmo nomokie ona 1000 3aoau 6yoe eusnauamucey nyiom

public class Main {
public static void main(String[] args) throws InterruptedException {

for (inti=0; i< 1000; i++) {
service.execute(new SimpleTask());

}
}

public class SimpleTask implements Runnable {
@Override
public void run(){
System.out.printin(Thread.currentThread().getName());

}
}

Tpemin mun nynie - ScheduledThreadPool

ScheduledThreadPool — ooszsonsiec susnauumu inmepeanu uacy 3 sakum 3adaui 6yOyme SUKOHYBAMUCH NYIOM, 3d
00NOM02010 Memooie

Service.schedule — susnauae npomisicox uacy, uepes sikuii 3a0aua 6yoe BUKOHAHA NICAsL 3aKIHYEHHSI NONEPeOHbOL.
Service.scheduleAtFixedRate — dozsonsic 3a0amu uac ouikysanus nepeo 3anyckom nepuioi 3a0ayi, i NOMIM NPOMINHCOK
yacy uepes AKull Oyoe 8351mo HACMYNHY 3a0ayy, He3ANEeHCHO 8I0 MO20 3A8ePULUIOCH BUKOHAHHS NONEPeOHbOi 3a0ai Yu Hi
Service.scheduleWithFixedDelay - 0ozsonsie 3a0amu uac ouikysanmns nepeo 3anyckom neputoi 3a0aui, i NOMim NPOMIHCOK
yacy uepes axKuti byoe 831mo HACMYNHY 3a0ayy, NiCJsA 3A6ePUIeHHs NONePeoHbol 3a0aUl.

Yemeepmuii mun nynie — SingleThreaded (cxoxmii Ha FixedThreadPool) mpu nbomy myJ BkiIo4yae Tiibku 1
NMOTIK. 3aga4i TAKOT0 NMyJ1y BUKOHYKOTHCS 3aB/KIU MOCJIII0OBHO.

Toch
/ Thread 0 LTI

application Yexas NokW
sagaqa He
BMKOHAETLEA.
CHNbEX YeraTH?
Y MOEHE B e 4ac
LWoch 3p0o0KUTH?

Takum uymHOM mnporpama, MO0 He NPOCTONBATH NMOKH IYyJ BHUKOHYE€ 3aaadi, Mae
AKUMOCHh YHHOM BMITH BU3HAYHUTH. BUKOHAHA 3271a4a YU Hi?

Interface Runnable — onucye inmepdgeiic, axuii ne nosepmac pezynomamu
Interface Callable - — onucye inmepdeiic, axuit nosepmac pesynomamu. €ounuit memoo call() —

He mae apeymenmis. Bunamkosa cumyauin moxcauea, akuio memoo call() ne moorce

o0uucaumu pezyiomamu.
3anescno 6io0 mozo, akum munom o0yoe eusnaueno Jenric V — makozo muny pesyibmam oyoe

ROBEPHEHO.

@Functionallnterface
public interface Callable<V> {

/**

@Functionallnterface
public interface Runnable {

/**
* Runs this operation. * Computes a result, or throws an
exception if unable to do so.

*/

void run();
* @return computed result

}
* @throws Exception if unable to
compute a result
*/

V call() throws Exception;

}

Interface Future —exrouae memoou ons onucy nomounozo cmany 3aoaui, aAka Oyna Hadic1aHA HA 6UKOHAHHA
Kummeesuii yukn 3aoaui

v’ 3aoaua 6 uepsi;

v' 3aoaua na euxonanni - RUNNING;

v’ 3aoaua euxonana (SUCCESS);

v’ 3aoaua ne eéuxonana uepes nemodxicnugicmo oouuciumu (FAILED)

v’ 3aoaua ne euxonana uepes euxauk «cancelled» (npuuuna — sakpummsa nomoxy)

—> HISSEE

h

RUNNING 4b<>7

h 4

FATLED

ANCELLED

Memoou inmepdpeiicy FUtUre 014 euznauenns KoHcHo2o 8i0N0BIOHO20 CMAHY 3a0a4i

v isDone() - mnosepmac True, saxkwo 3adauy
3aeepuieHo 0e3 BUHAMKOBOI cumyauii.

v isCancelled() - noeepmae True, akuwio 3adauy
3aeepuieHo 0e3 GUHAMKOG0I cumyauii abo 3
BUHAMKOBOI) CUMYAUICIO

v Get(long timeout, TimeUnit unit) - wuekae
NPOMA2OM 3A0AHO20 RPOMINCKY UaACy, HOMIM

Axkwo 3a0auy euxonano — completed, axwo ne

GUKOHAHO, MOOI.

CancellationException — 3adauy ckacosano.

ExecutionException — nomunka npu oouucnenni

InterruptedException —

TimeoutException — 3adaua mHe ob6uuciena

NPOMA2OM 3A0AHO20 HACY

v" resultNow() - noéepmae nomounuii cman 3adaui,
HA NOMOYHUIL MOMEHM, He YEKAE.

not isDone()

ety

Thread.currentThread().interrupt()

get(y

RUNNIN

FATLED

Ilpuxnao - 00 mux nip noku, 3aoaua 6 cmani RUNNING — uexaemo. Ilomounuii cman euznauaemo memooom get()

private static void singlethreadsingletask() {

ExecutorService service = Executors.newSingleThreadExecutor();
Future <String> poolFuture = service.submit(new MyCallable("mytask"));

while (!poolFuture.isDone()){

System.out.printin("waiting for future");

}

try {
System.out.printin(poolFuture.get());

} catch (InterruptedException e) {
throw new RuntimeException(e);

} catch (ExecutionException e) {
throw new RuntimeException(e);

}

service.shutdown();

Ilpuknao — B cmani RUNNING 10 3a0au. Biocriokosyemo Ilomounuit cman eusnauaemo memooom Qet() o1a xoxncnoi.

private static void singlethreadmultitask() {

ExecutorService service = Executors.newSingleThreadExecutor();
List<Future> allFutures = new ArrayList<>();
for (inti =0; i<10; i++) {
Future<String> poolfuture = service.submit(new MyCallable(" mytask"));
allFutures.add(poolfuture);
}
for (inti =0; i<10; i++) {
Future future = allFutures.get(i);

try {
System.out.printin(future.get());

} catch (InterruptedException e) {
throw new RuntimeException(e);

} catch (ExecutionException e) {
throw new RuntimeException(e);

}
}

service.shutdown();

}

Ilpuknao — B cmani RUNNING 10 3a0au. Biocniokosyemo Ilomounuit cman eusnauaemo memooom get(long timeout,
TimeUnit unit) dsa xosxcnoi.

private static void singlethreadsingletasktimeout() {

ExecutorService service = Executors.newSingleThreadExecutor();
Future <String> poolFuture = service.submit(new MyCallable("mytask"));

try {
String result = poolFuture.get(500, TimeUnit.MICROSECONDS);

System.out.printin("results "+result);

} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (ExecutionException e) {
throw new RuntimeException(e);
}catch (TimeoutException e) {
System.out.printin("Could not complete the task before time out");

}

service.shutdown();

Ilpu cmeopenni exzemnaapy nyay, 6UKAUKACMbCA KOHCMPYKMOpP, AKUI Mac HAOip napamempie 01sa e6ci 4x
munie nyJi.

public ThreadPoolExecutor(int
corePoolSize,

int maximumPoolSize,

long keepAliveTime,

Executors.newFixedThreadPool(2)

TimeUnit timeUnit,
BlockingQueue<Runnable> workQueue,

ThreadFactory threadFactory,

RejectedExecutionHandler handler)

v corePoolSize — kinbkicTes «kernel» morokiB B moii, SKi € akmuénumu 3a
3aMO68YeHHAM, HIKOIU HE BUAAIAIOTECS 3 yny. Il]o make «kernel» nomik?

v’ Ak euzauacmoca pomip nyay?

v corePoolSize+Current Pool size (romani/BunaieHi mMoToOKM).

v maximumPoolSize — wmakcumanbHa KIUIBKICTh IIOTOKIB, SKa MOXKE OyTH
BKJIIOUCHA B 1YL

v keepAliveTime — yac mpoTsarom, sIKOro Iyl MO)Ke He Matu 3aaadi (To0To OyTu
Idle) mo MoMeHT komm #oro OyTH «TEpMIHOBaHO». SIKIIO IOTIK O3 3amadyl
IOBIIIC 3a BHU3HAUCHMM dYac 1 Ied moTik He € «Kernel» Ttomi iHoro Oyme
IIEPEBUKOPUCTAHO a00 3akpuTo. «Kernel» morik - HIKOIM HE «3aKPUBAETHC.
SAxmo mapamerp allowCoreThreadTimeout Busnaueno «true» Tomi «kernel»
MOTIK TAKOXK MO>KHA TTEPEBUKOPUCTATH.

MNopiBHANbHA TabanuA

JETETNE o FixedThread | CachedThrea | ScheduledThreadPool | SingleThreaded
Pool dPool

corePoolSize MNepepaetbca O MNepenaetbea, AK
, AK napameTp
napameTp

maximumPoolSize [lopiBHIOE Integer. MAX_ IntegerrMAX VALUE 1
corePoolSize VALUE

keepAliveTime 0 60 60 0

BuainatoTb ABi 3aranbHi KaTeropii NOToKiB: momoKu Ha pieHi kopucmyeaya (UserLevel Threads — ULT) i nomoku Ha
pisHi adpa (Kernel-Level Threads — KLT). [TOTOKW Apyroro TMny HasuBatoTbCA NOTOKAMM, NiATPUMYBAHUMKN AAPOM
abo nonerweHnmm (nerkosarumm) npouecamm

[Tpouecu

A

[loToxkH
HpOCTip KOpHCTYyBa4a
q Tabmus Tabmuns
po : ?
MpoIIeCIB MOTOKIB

[MOTOKM - B aJipeCHOMY IIPOCTOPI s/Apa

cmpamezia GUKOPUCMAHHA NOMOKI6 HaA pPIGHI
A0pa. SAPO MOXE OJHOYACHO 31MCHIOBATU
IJIaHyBaHHS POOOTH JEKIIBKOX

MOTOKIB OJTHOTO 1 TOTO * IPOIECY Ha JEKIJIbKOX
npouecopax. [lo-npyre, npu 0JIOKyBaHH1

OJTHOTO 13 MOTOKIB MPOILIECY SIAPO MOXKE BUOpaTu
JUI BUKOHAHHS 1HIIWH ITOTIK IILOTO K

npouecy. llle onniero mepeBaroro Takoro migxomy
€ T€, 0 caMi IPOLEAYPH Sapa MOKYTh

_OyTu 0araTonoTOYHUMH.

OCHOBHUM HEIOJIIKOM MIJIXOYy 3 BUKOPUCTAHHSIM
MOTOKIB Ha PIBHI /1pa, B

NOPIBHSIHHI 3 BUKOPHCTAHHSIM IOTOKIB Ha PIBHI
KOPUCTYBaya, € Te, 10 JJIsI Iepeaadi

yIOpPaBIIHHA BlJ OJHOIO IOTOKY JO IHIIOTO B
paMKax OJHOTO 1 TOTO X MPOLECY TOBOJUTUCS
MEPEMUKATHUCS B PEXKUM s]Ipa

BuainatoTb ABi 3aranbHi KaTeropii NOToKiB: momoKu Ha pieHi kopucmyeaya (UserLevel Threads — ULT) i nomoku Ha
pisHi adpa (Kernel-Level Threads — KLT). [TOTOKW Apyroro TMny HasuBatoTbCA NOTOKAMM, NiATPUMYBAHUMKN AAPOM
abo nonerweHnmm (nerkosarumm) npouecamm

cmpamezia GUKOPUCMAHHA NOMOKI6 HaA pPIGHI
Kopucmyeaua

JIns nmepeMukaHHsT TOTOKIB HE MOTPIOHO
NEPEXOJUTH B PEKUM siFIpa, OCHOBHOI CTPYKTYpHU
JaHl O YMOPaBIIHHIO MOTOKAMHU 3HAXOASTHCS B
aApEeCHOMY MPOCTOP1 OJTHOTO 1 TOTO XK

po1ec.

[Tponecn

[Toroku

Tabnuus

biGmioreka mignporpam i . ‘
st poOOTH 3 MOTOKAMHM “e ;-
e [IpocTip gKOpHCTYBaua

- L

Tabmurst nporecis Anpo

[MOTOKM - B aJipeCHOMY ITPOCTOP1 OJHOTO 1 TOTO K
pOIIECY.

v/ TimeUnit — Bu3Hauae ONWHMII BHMMIpy JUIsS Yacy, KOJIM IIOTIK Moke Oyrm 0e3 3amadi
TimeUnit.MILLISECONDS, TimeUnit.SECONDS, and TimeUnit. MINUTES.

v" BlockingQueue — uepra 3ama4, BU3HAYa€THCS TUIIAMM

>

>

ArrayBlockingQueue — oOmekeHa dvepra Ha OCHOBI MacHBY, SKa HaJa€ IOCTYI 10 3aaad 3a
npuniunom FIFO.

LinkedBlockingQueue — ymoBHO oOMekeHa depra Ha OCHOBI CITMCKY, sIKa HaJa€e JOCTYII JIO 3a/1a4 3a
npuHnunom FIFO. ko po3mip He Bu3HavYeHO, To1 MakcuMmanbHui po3mip Integer. MAX VALUE
PriorityBlockingQueue — ne oOMekeHa uepra, B ki 3a7adi BiJICOPTOBaHi.

DelayQueue — ne oOMekeHa depra, sika HaJgae AOCTYIH 0 3aJ]ad, 32 YMOBH, 1[0 Yac ITOYaTKy 3ajadi
noyaBcs 3 ypaxyBaHHs 3a1aHo delay time.

SynchronousQueue - Yepra OmokyBaHHS, sika He 30epirae enemenT. ¥ SynchronousQueue kokHa
orepaillisi BCTaBKU MOBHHHA YEKATH BIJMOBIHOI OIeparlii BUAAJCHHS 1HIIIMM ITOTOKOM 1 HaBITaKHU.
LinkedTransferQueue: HeoOMexkeHa depra Ha OCHOBI COHCKIB. Y TIOpIBHSHHI 3
LinkedBlockingQueue, mae meromu transfer() i tryTranfer(), ski HeraiiHo mnepemaroTh 3amady
MOTOKY, IKUW OUIKy€ Ha HOTO OTPUMAaHHSI.

LinkedBlockingDeque: HeoOmexeHa dyepra Ha ocHoBi deque. Ile mo3Boiisge nomaBaTv Ta BHIAISATH
3a/1a4l SIK 3 TOJIOBU, TAK 13 XBOCTA YEPTH.

MopiBHANbHA TabaunuA

_

FixedThreadPool LinkedBlockingQueue Yepra, BKIIIO4a€ HEOOMEKEHY
KUIBKICTb 3a7a4

SingleThreadExecutor LinkedBlockingQueue
CachedThreadPool SynchronousQueue
ScheduledThreadPool DelayWorkQueue

Custom pool (nyn, akni ctBoptoeTbes BUKAMKOM ArrayBlockingQueue
KOHCTpYKTOpa ThreadPoolExecutor

)

v ThreadFactory - BUKOpHCTOBY€TLCS [JIsE CTBOPEHHS HOBHMX IIOTOKIB Ha BUMOTY.
v RejectedExecutionHandler- peaiizye MexaHi3M BiAXWJIEHHs, KOJH uYepra 3allOBHEHa, a00 JIOCATHEHA MaKCHMajIbHY

K1JIBKICTH ITOTOKIB.

ThreadPoolExecutor.AbortPolicy: skmio yepra 3aaa4 3anmoBHeHa Ta He Ma€ BIJILHOTO MOTOKY — Hajicuiae rejected

tasks, throws a RejectedExecutionException

- ThreadPoolExecutor.DiscardPolicy: sxmio uepra 3ajga4 3anoBHeHa Ta He Ma€ BLILHOIO MOTOKY — iIrHOPYE 3a1a4Yy.
- ThreadPoolExecutor.CallerRunsPolicy: skimio yepra 3aga4 3anmoBHeHa Ta He MA€ BIJIbHOTO MOTOKY — BUKOHYE

3a/1a4y B MOTOLI SIKWI 32/1a4y HA/ICUJIAE.

- ThreadPoolExecutor.DiscardOldestPolicy: skmio uepra 3aaa4 3anoBHeHa Ta He MA€ BIJIbHOTO MOTOKY — BUKH/IA€

3 IYJIy «CTapy 3a/a4y», 101a€ HOBY 3a/1a4y.

1

execute (new Task())

reject - RejectedExecutionException
= Thread 0

Thread 1

Thread _10

IIpuknao - ThreadPoolExecutor.AbortPolicy — Bu3HaueHO 32 3aMOBUCHHSIM.
ctBoproeMo Custom mys1: onuH MOTIK, yepra 3 110 3a1a4ero

LLlo o4yikyeme
nobayumu 8
KOHCconi?

Ilpuxnaod - ThreadPoolExecutor.DiscardPolicy —Buaanse 3apauy 3 uepru. Future.state 3apaui - Cancelled

Lo o4yikyeme
nobayumu 8
KOHCOi?

Ilpuxnao - ThreadPoolExecutor. DiscardOldestPolicy()

LlJo ovikyeme
nobayumu s
KOHCOi?

3ynuHKa myJy nmoTokis

service.shutdown() — iHiLirO€ MPOIEC 3aKPHUTTS MTOTOKIB.

service.isShutdown() — moseprae True, K10 IpoIieC i1HIMIHOBaHO.

service.isTerminated() — moBeprae True, sIKIO BCl 3a1a4i 3aBEPILIECHI.

service.awaitTermination (10, TimeUnit.SECONDS) — Gmokye 3akpuTTs MOTOKIB MPOTATOM BH3HAYEHOTO YAaCYy,
TAaKUM YMHOM JIa€ MOXJIMBICT 3a/1a4aM 3aKiHUUTHCS.

Service.shutdownNow() — moBHa 3ynuHKa IyIty.

public void destroy()

{try {

poolExecutor.shutdown();

if (!poolExecutor.awaitTermination(AWAIT_TIMEOUT, TimeUnit.SECONDS))
{ poolExecutor.shutdownNow();

}

}
catch (InterruptedException e) { // If the current thread is interrupted, cancel all tasks again.
pool.shutdownNow(); // Maintain the interrupt status.

Thread.currentThread().interrupt();

}
}

Cmanu nyny

RUNNING: ThreadPoolExecutor — npuiimae HOBI 3a/1a4i 1 BUKOHYE.

SHUTDOWN: ThreadPoolExecutor — He npuiimae.

STOP:ThreadPoolExecutor mpuiimMae HOBI 3a7adi i HE BUKOHYE, 1 3yIUHSE 3a7a4i, sIKi BAKOHYIOThCS.
TIDYING: ThreadPoolExecutor — B mporieci 3ynuHKH.

TERMINATED: ThreadPoolExecutor mys moBHICTIO 3yITHHEHO.

SHUTDOWMN

hen both queue

shutdown() and pool are empty

terminated()
RUNNING shutdownNow() TIDYING Gt TERMINATED

shutdownMNow()

When pool is empty

Y
STOP

NMumaHHA

[Io Take iHTepdeiic ExecutorService i siky poib BiH Bilirpae B KepyBaHHI BUKOHAHHSAM 3aJ1a4 y ITYJTi MTOTOKIB?
VY gomy pizHuIs Mixk Metonamu execute() Ta submit() inrepdeiicy ExecutorService?

SIki MOXKIIMBOCTI Haax0Th MeToAu Future, mo nmoBepraroThes MeTogoM submit()?

Sxe nmpusnadennsa meroniB shutdown() ra shutdownNow() i unM BoHH BiApi3HAIOTHCS?

Sk npairtoe meton awaitTermination() i B skMX BHITaJiKaX HOTO JOLIIBHO BUKOPHUCTOBYBATH?

SIki cTaHM MOYKE MaTH IOTIK y Java Ta K X MO)KHAa BU3HAUMTH 3a JIOTIOMOTOF0 Kjiacy Thread?

Sxe npuzHaueHHs MeToxy getState() 1 sky indopmaliiro BiH moBeprae?

Yum BigpizasioTbes metonu iSAlive() Ta getState() mpu anamnizi ctany moToxy?

Yomy meton Thread.stop() BBaxkaeThcss HEOS3IEUHHUM 1 HE PEKOMEHIOBAHUN O BUKOPUCTaHHS?

10 SIK KOpEKTHO pealti3yBaTh MeXaHi3M 3yIHHKH IOTOKY 3a jJoromoroto interrupt()?

11. SIxi mepeBarv BUKOPUCTAHHS ITYJIiB IOTOKIB MIOPIBHSHO 31 CTBOPCHHSAM IIOTOKIB BPYyYHY?

12. 1 sxkux 3aaa4 Io1iabHO BUKOpUcToBYyBaTH FixedThreadPool i ski fioro oOMexxeHHs?

13. Yum CachedThreadPool eiapizuserncs Bin FixedThreadPool 3 Touku 30py ynpaBiiiHHS KiUTBKICTIO ITOTOKIB?
14. Sxe nmpusnauenus ScheduledThreadPool i sixi Tvnu mitanyBaHHs 3aa4 BiH HiATPUMYE?

15. ¥V axux crieHapisx Bapto 3acrocoByBaru SingleThreadExecutor i sixi rapaHTii HOpsIKY BUKOHAHHS BiH 3a0e3meuye?

©Oo~NOO Ok WM E

