Jlekuis 2. biaokyroui yepru
Ta JeKMU.

Tema 1. OcnoBHi 3a1a4i Ta Xxapakrepuctuku inTepdeicis BlockingQueue, TransferQueue,
BlockingDeque.

Tema 2. Metonu oOpoOKH 3alUTIB HA OTPUMAHHS, J0JiaBaHHA Ta EPENIA 3a7a4 y OJIOKYI0Uii uep3i
abo meri.

Tema 3. Metonu knacis ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque,
LinkedBlockingQueue, LinkedTransferQueue, PriorityBlockingQueue, SynchronousQueue.

java.util.concurrent

java.util

winterfaces

| E :
ArrayBlocking T

BlockingQueue }‘:‘J I Queus
|
I R
I —: E :
l | LinkedBlocking | —
_ o | Queus
r E | r E 1 |
- —_—— I I~ — 7
winterfaces winterfaces I I E |
TransferQueue BlockingDeque I PriovityBlocking | —
{ r—— Queue
A B |
_— - [—
—J_Ir E _|_= £ | I e
]] |
LinkedTransfer LinkedBlocking 'l | synchronous™ T~
Queue Deque I Cueue
I
| c———== I
K| == : |5 Delaved
winterfaces ~ |_H- V_I L— =+ DelayQueue
ConcurrentMap _| Concurrent
HashMap
— e
=== Concurrent” |~
Kow ! l_K_‘uI'_I LinkedQueue
interfaces '— - =! | KV
Concurrent _ | Concurrent o
NavigableMap SkipListMap | g |
I
Concurrent ™ |
I LinkedDeque | — — — —
—| E
CopyOnWrite | ol
ArrayList
E L E L
CopyOnWrite” | — Concurrent” |
ArraySet SkipListSet

| E i E J|
[~ AbstractQueve - —— [“ifgi:iiew]
| E | M
=71 —_
Abstract sinterfaces
Collection Deque
I
I
|
|
——————————— I
I
I
I
|
— | L
:- E |
—_— =
[:: winterfacas
_____________ List
| E | "
TS Abstractser - ——{>f “Merace

Classes

LR NOULRAEWDNR

WWWWWRNRNNRNNNNNNNRRRRRRBRRRR R
BRONRPOOVLONNODUDWNROWOVOONOAOAUDNWNLERO

w
w1

AbstractExecutorService
ArrayBlockingQueue
ConcurrentHashMap
ConcurrentLinkedDeque
ConcurrentLinkedQueue
ConcurrentSkipListMap
ConcurrentSkipListSet
CopyOnWriteArrayList
CopyOnWriteArraySet

. CountDownlLatch

. CyclicBarrier

. DelayQueue

. Exchanger

. ExecutorCompletionService

. Executors

. ForklJoinPool

. ForkJoinTask

. ForkJoinWorkerThread

. FutureTask

. LinkedBlockingDeque

. LinkedBlockingQueue

. LinkedTransferQueue

. Phaser

. PriorityBlockingQueue

. RecursiveAction

. RecursiveTask

. ScheduledThreadPoolExecutor

. Semaphore

. SynchronousQueue

. ThreadLocalRandom

. ThreadPoolExecutor

. ThreadPoolExecutor.AbortPolicy
. ThreadPoolExecutor.CallerRunsPolicy
. ThreadPoolExecutor.DiscardOldestPolic

y

. ThreadPoolExecutor.DiscardPolicy

Array Blocking Queue

Jlorika «ImocTaqaIbHUK» - «CIIOKHBAUa»: «IIOCTadalIbHUK» JTaHuX (Producer) ta «crmokuBayy JaHux (CONSUMEr) MaroTh

HACTYMHI1 (QYHKIIIT: «IIOCTa4YaJIbHUK» - JIOJA€ JaHi 10 JICSIKOTO CXOBUIIA, «CIIOXKUBAW» - 3a0Upae AaH1 31 cxoBuiia. SAkiio B
CXOBHUIIIE HEMA€E JAHUX - «CIIOKUBAY» YEKAE; SIKIIO B CXOBUIIE HEMAE MICIS - «IIOCTAYaIbHUK)» YEKAE.,

queue (FIFC)

T put take

: - block if queue is empt;
block if queue is ful ¥

1M 1M
producer CONsuMmer

PosrsaeMo peanizamiro ArrayBlockingQueue 3 metomamu kinacy MowiTop: synchronized, wait(), notify All()

import java.util.LinkedList;

public class ArrayBlockingQueue<T> {
private final LinkedList<T> queue;
private final int capacity;

public ArrayBlockingQueue(int capacity) {
this.capacity = capacity;
this.queue = new LinkedList<>();

}

public SYIN chronized void put(T item) throws
InterruptedException {
while (queue.size() == capacity) {
wait();
}
queue.add(item);
notifyAll();
}

public synchronized T take() throws InterruptedException {
while (queue.isEmpty()) {
wait();
}
T item = queue.remove();
notifyAll();

return item;

}

public synchronized int size() {
return queue.size();
}
}

public static void main(String[] args) {
final int capacity = 5;

ArrayBlockingQueue<Integer> queue = new ArrayBlockingQueue<>(capacity);

Thread producerThread = new Thread(() -> {
try {
for (inti=0;i<10; i++) {
queue.put(i);
System.out.printin("Produced: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
e.printStackTrace();
}

N

Thread consumerThread = new Thread(() -> {
try {
for (inti=0;i<10; i++) {
int item = queue.take();
System.out.printin("Consumed: " + item);
Thread.sleep(2000);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
1;
producerThread.start();
consumerThread.start();

try {
producerThread.join();
consumerThread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

1) CKinbKku
NnoBiAOMNEHb
nocTavyabHUK
BiANpPaBUTb B Yepry?

[Tpocra peamizarito Gmokyrodoi yepru 3 Bukopuctanusm LinkedList. Brokyroua yepra me THIl CTPYKTYpH JAHUX, SKAW MIATPUMYE OIeparlii BCTaBICHHS Ta
BUJIAJICHHSI €JICMEHTIB, TAKOXK YIIPABJISIE PO3MIPOM YEPTH, HE JI03BOJISIIOUH 1 TEPETIOBHIOBATHCS.

[Toss knacy:

private final LinkedList<T> queue; - 00'exT uepru, sika BUKOPUCTOBYETHCS JUIs 30€piraHHs €JICMCHTIB.
private final int capacity; - MakcuMasbHa KiUTBKICTh €JIEMEHTIB, Ky MOKE BMICTHUTH Yepra.
Koncrpyxrop:

public ArrayBlockingQueue(int capacity) - KoHCTpYKTOp NpHiiMae OTUH apryMeHT Capacity, skuii BCTaHOBIIOE MAaKCUMAIbHY €MHICTh YeprH, 1 IHIIiami3ye
yepry sik HoBui LinkedList.

Metonu:.

public synchronized void put(T item) - Meton /i 1o/aBaHHs €JeMEHTa B uepry. SIKIIo dyepra 3armoBHeHa (TOOTO pO3Mip YeprH JOPIBHIOE EMHOCTI), OTIYHUN
HOTIK Oyae 4ekaTH, MOKW B uep3i He 3'sBuThes Mictie. Ilicns momaBanus enementa meron NOtifyAll() BukimukaeTbes st poOYIKEHHS 1HIIMX MOTOKIB, SKi
MOXKYTh OYIKyBaTH Ha MOXJIMBICTb JOJATH a00 B3STH €JIEMEHT.

public synchronized T take() - Mertoa aist B3STTSA Ta BHIAJCHHS MEPIIOTO €JIEMEHTa 3 Yepru. SIKIo yepra MOPOXKHS, MOTOYHHMH MOTIK YeKaTUME, MOKU HE
3'IBUTHCS, IIIOHAWMEHIIIe, OUH efieMeHT. [Ticis Bunanenus enementa metoxa NOtifyAll() Takox BUKIHMKAETHCS 17151 MPOOYIKEHHS YEKaOYHX MMOTOKIB.

public synchronized int size() - MeTox noBepTae HOTOYHUN PO3MIp YEPTH.

KiTrouoBMM acnekToM IbOro KJacy € BUKOPHCTaHHS KIIH04oBOro cioBa Synchronized mms metoxiB put, take ta sSize, mo 3a0e3neuye B3aeMHE OJOKYBaHHS
MOTOKIB JIJI1 YHUKHEHHS OJHOYACHOTO JOCTYIY J0 YEprd Pi3HUMH TMOTOKAMH, IO MOKE MPHU3BECTH 0 JIOTIYHUX MOMHJIOK a00 HEBIPHOTO CTaHy JaHHX.
Mertoau wait Ta notify All BUKOpHUCTOBYIOTHCS IJIs1 KepYBaHHS MOTOKAMH, sIKi OYIKYFOTh Ha MOKJIMBICTh 10JaTH ab0 B3SITH €JIEMEHTH 3 YeprH, KOJU BOHA MTOBHA
a00 TTOPOXKHSI.

Synchronized

Meton wait() BuxopuctoByerbcs B put() 1 take(), mo0 npM3ynuHUTH BHUKOHAHHS IIOTOKY, KOJIM IICBHI YMOBH HE
BUKOHYIOThCS (HAMPUKJIAJI, yepra 3ali0BHEHA a00 MOPOXKHS).

Jlts Bukiauky Wait() moTik, 10 BUKJIHMKAaE, MMOBUHEH YTPHMYBaTH BHYTpIIIHE OJOKyBaHHS a00 OJIOKyBaHHS MOHITOpa
00’exTa (ToOTO MeTOT Mae OyTH BU3HAUCHMI KITFOYOBHM ciioBoM Synchronized).

[ToniOonum yunom, notifyAll() Bukiankaerbces, mo0 mpoOyaUTH BCi iHINI MOTOKH, SIKI OYIKYIOTh Ha MOHITOpI 00’ekxTta. Llei
METO/I TaKOX BHUMAarae, MO0 BHUKJIMKAIOUUA TMOTIK YTPUMYBaB BHYTpPIIIHE OJOKyBaHHS OO0 ’€KTa, JJisi SIKOTO BIH
BUKJTUKAETHCSI.

SAxmo 3ammmurH Wait() 6e3 Synchronized - be3 BK/IIOYeHHsI IMX BHKJIHKIB y CHHXPOHi30BaHHMi 0JIOK ado 0e3
CHHXPOHi3amii caMux MeToliB moTik, sikuii Bukankae wait() ado notifyAll(), ne yrpumye HeodxiaHOro 0,JIOKyBaHHSA
Ha MoHiTopi 00’exTa. Ile mpu3BoauTh 10 lllegalMonitorStateException.

"C:\Program Files\Java\jdk-22\bin\java.exe" -javaagent:C:\ideaIC-2024.3.win\lib\idea_rt.jar=65145:C:\idealC-2024.3.win\bin -Dfile.encoding=UTF-8

""MoHiTOp 00'exkTa"

B Java "moHiTop 00'ekTa" — 1€ MeXaHi3M, SKHi 3a0e3redye B3aeMHe OMoKyBaHHs (Synchronization), mo go3Boiisi€ KepyBaTH AOCTYIIOM 1O CIUIbHHX
pecypciB pizHuMu notokamu. KoxxeH 00'exT B Java mae MOHITOp, IKUIl BUKOPUCTOBY€ETHCS AJIs peaizallii OJ10KiB CHHXPOHI3AIi].

MOoHITOpY BUKOHYIOTH JIBI OCHOBHI (PYHKITIi:
Lock (bnokyBanHs):
Konu moTik BXOAUTh Y CHHXPOHI30BaHU 070K a00 METO/I, BIH aBTOMAaTUIHO OTPUMYE "3aMOK" Ha MOHITOPI IILOTO 00'€KTA.

SIKIIO 1HIIMHK MOTIK HAMaraeThCsi BUKOHATH CUHXPOHI30BaHUI 050K a0 MeTof TOTO X 00'ekTa, BiH Oyne 3a0J0KOBaHUM O THX Mip, MOKU MEPIINA MOTIK HE
Buiijie 3 010Ky a00 MeToay 1 HE 3BUIBHUTH MOHITOP.

Wait Set (HaGip ouikyBanHs):

Kosim notik Bukiukae meron Wait() BcepennHi CHHXPOHI30BAaHOTO KOHTEKCTY, BIH BIITyCKa€e 3aMOK MOHITOpa Ta MEPEMIIIyEThCs 10 HAOOpy OYiKYBaHHS
IIOTO MOHITODA.

[Toroku y HabOpi OYIKYBaHHS 3aJIUINAIOTHCS 3a0JIOKOBAHMMHU JI0 THX Iip, MOKHW iHIIMK MoTik He Bukiukae Notify() ado notifyAll() na Tomy *x 00'exTi, B
pe3yabTari 4oro oJuH abo BC1 MOTOKH Y HAOOp1 OyyTh MPOOYIXKEH]1 1 CIIPOOYIOTh 3HOBY OTPUMATH 3aMOK Ha MOHITOPI.

OT1:xe, MOHITOP 00'€kTa JomoMarae 3a0e3nMe4uTH, 0 MOTOKH He BXOAATH Y KPUTHUYHI CeKUil KOAY, Je BOHH MOIUIM 0 B3a€EMOAIATH 3 CHUILHUMU
JAHUMH Y CNOCi0, AKUIA Mir OM MPU3BECTH 10 HEMOCTAIAOBHOCTI 200 MOMUJIOK nporpamMu. Ile 1a€ MOKIMBICTH CTBOPIOBATH T0AATKH, SIKi IPABUJIbLHO
i epeKTMBHO BHKOPHCTOBYHTH 0araronmoTO4HiCTh, MiHIMI3ylOUH PH3UKH KOHQUIIKTIB JaHUX Ta 3a0e3Me4yl4d KOPEKTHY KOOPAHHALII MIiXK
NMOTOKAMM.

public static void commonobjectdemo()

{

int numberOfThreads = 10;
Thread[] threads = new Thread[numberOfThreads];

for (int t = 0; t < numberOfThreads; t++) {
threads[t] = new Thread(() -> {
for (inti=0; i< 10000; i++) {
counter++;

1;

threads[t].start();
}

for (Thread thread : threads) {
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();

}
}

System.out.printIn("Final counter value: " + counter);

CninbHUM 06'eKT

AKe 3Ha4yeHHA counter cnig o4iKyBaTH?

Slkio He BUKOpHCTOBYBaTH Synchronized y GararomoTodHoMy mporpamMyBaHHI Il peCypCiB, sIKi JTOCTYIHI IS JEKIIBKOX IMOTOKIB, MOXKYTh BUHUKHYTH
pi3HI THIIN KOH(UTIKTIB 200 TOMWIOK. OJMH 3 TaKUX KOH(QIIIKTIB HA3MBAETHCS 3MaraHHsIM 3a pecypcu (race condition).

[Tpuknan kKoHOIIKT:
VYsBIMO, IO MU MA€EMO OJIOKYIOUY Yepry, K y IMOoNepeIHpOMY MPUKIIai koxy, aie meroau put() i take() He cuHXpoHI30BaH.

MaiiMo J1Ba IIOTOKH.

[Torik Producer, sikuii BukoHye meto put(item) s qogaBaHHsS eleMEHTa 0 YEPIH.

[Torik Consumer, sxuii Bukonye metoy take() mist 3abupanHs erleMeHTa 3 4Yepr.

Cuenapiii 3MaraHHs

[Totik A mepeBipsie po3mip depru (queue.size()) 1 0aunTsp, 1110 yepra He MOBHA.

B 11eit camuii yac, motik B Takox mepeBipsie, 4u yepra He TIOPOXKHS, 1 0a4UTh, 110 BOHA HETIOPOXKHS.
[Totik A mofae eneMEeHT B KiHEIb YEPTH.

Maibxe omHOYacHO, MOTIK B BHpiITye B3ATH 1 BUJATUTH €IEMEHT 3 TOYaTKy YeprH.

SAxio 11 oneparlii BUKOHYIOThCS 0€3 HaJeKHOI CHHXPOHI3aIlil, MOXKJIMBA CUTYaIlis, KOJIM MOTIK B cipoOye 3a0patu eneMeHT 13 4epru J0 TOro, K MOTiK A
BCTUTHE JOJaTH HOBUM €JIEMEHT, HaBITh SKIIO MOMDK MEPEBIPKOIO CTaHY 1 J0JlaBaHHSIM/3a0MpaHHsIM €JIEMEHTY B 4ep3i MuHyJa MmiticekyHaa. Lle moxe
MIPU3BECTH JI0 CIIPOOH 3BEPHEHHS 10 HEICHYIOUOTO €JIEMEHTA Ta BUKJIMKATHA MTOMIUIKY Yacy BUKOHAHHS.

public interface BlockingQueue<E> extends Queue<E>.

Implementing Classes: ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue,
LinkedTransferQueue, PriorityBlockingQueue, SynchronousQueue

Yepra, sika OIATPUMYE Omepallli, siki O4lKyI0Tbh, [IOKH Yepra CTaHe HENOPOKHbBOIO IMiJ] 4YaC OTPUMAHHS €JIEMEHTA, 1
YeKaroTh, IOKU B Yep31 3BUILHUTHLCS MiClIe M1 Yyac 30epekeHHs eneMenTa. [linTpumye yotupu popmu o0poOKu
orepaliil OTpUMaHHs/ 10AaBaHH/ TIEPEII Ay JaHUX:

v’ TIEpIINii THII — METOJU T€HEPYIOTh BUHATKOBY CHTYAIIi0, SKIIO Jif0 HE BUKOHATH.

v’ JpyTHii - IOBEPTAIOTH crieliaapHe 3HaueHs (abo null, abo false, sanexno Bix omeparris).

v’ TpeTiii - OJI0KY€ IMOTOYHHI MMOTIK Ha HEBU3HAYCHHUM TEPMIH, TOKH OIEPAIlis HE 3aBEPIIMTHCS YCITIIIHO.

v YeTBepTHii - OJI0KYE€ JIMIIE IMPOTATOM IIEBHOTO MAKCHMAaJILHOIO Yacy, IEPII HiXK BiZIMOBHUTHCAL.

Throws exception

Special value

Blocks

Times out

Insert

add(e)

offer(e)

put(e) ‘

offer(e, time, unit)

Remove

e Y
remove()

poll()

take() ‘

poll{time, unit)

Examine

element()

F
peek()

not applicable ‘

not applicable

public class DelayQueue<E extends Delayed> extends AbstractQueue<E> implements BlockingQueue<E>

DelayQueue — me criemianizoBaHa peasisaliisi 4epru i3 3aTpuMKOr0 B Java, sika 3acHoBaHa Ha iHTep(etici BlockingQueue. Enementn, siki 101ar0ThCSI
no DelayQueue, maroTh TIEBHHI Yac 3aTPUMKH, 1 Ii €JIEMEHTH CTAIOTh JOCTYITHUMHU JIAIIE IMiCys 3aBEPIICHHS iXHBOI 3aTpuMKh. EinemeHTH y uep3i
MaroTh peaiizoByBaru iHTepdeiic Delayed.

Tepmin nii enemenTa 3akinguBcs, ko ioro metoxa getDelay(TimeUnit. NANOSECONDS) noseprae 3Ha4eHHsI, MEHIIIe a00 JOPIBHIOE HYITIO.
MeToau, siKi MPAIIOI0Th Y3TOKEHO BIMOBIAHO Yacy 3aTPUMKHU

poll()

poll(long, TimeUnit)

take()

remove()

VYci iHII METOAM JiI0Th SIK Ha IPOCTPOYCHI, TaK 1 Ha HEMPOCTpOUCHI eneMeHTH. Hanpukitan, Meron Size() moBeprae KiJIbKIiCTh YCiX CJIEMEHTIB.

Merton peek() moske moBepratu (He HYJIOBHI) 3arojIOBOK, HaBiTh sKIo take() OiiokyBaB OM o4YiKyBaHHS 3aKiHUECHHS TEPMIiHY JIii I[bOTO EJIEMEHTA.

L{s yepra He J03BOJIE€ HYJAbOBI €JIEMEHTH.

static class Delayedltem implements Delayed {

private final String item;
private final long expirationTime;

public Delayedltem(String item, long delay, TimeUnit unit) {
this.item = item;
this.expirationTime = System.currentTimeMillis() +

TimeUnit. MILLISECONDS.convert(delay, unit);

}

}

@Override

public long getDelay(TimeUnit unit) {
long delay = expirationTime - System.currentTimeMillis();
return unit.convert(delay, TimeUnit. MILLISECONDYS);

}

@Override
public int compareTo(Delayed o) {
if (this.expirationTime < ((Delayedltem)o).expirationTime) {
return -1;
¥
if (this.expirationTime > ((Delayedltem)o).expirationTime) {
return 1;

¥

return O;

}

public String getltem() {
return item;

}

Knac Delayedltem peanisye intepdetic Delayed i nmpencrasmise
€JIEMEHT 3 3aTPUMKOIO.

Konctpykrop Delayedltem mnpuiimae psigok (enemeHT), dac
3aTPUMKH 1 OJUHUITIO YacCy.

Yac 3aTpuMKH TIEPETBOPIOETHCS Y MUTICEKYHIH 1 JTOJAETHCS 10
MOTOYHOTO Yacy JIJIsi BU3HAYCHHS] MOMEHTY, KOJIU €JIEMEHT CTaHe
JIOCTYITHHUM.

Merton getDelay moBeprae uac, mo 3aJMIIUBCA 0 aKTHBALIil
eJIEMEHTA.

public static void testdelayqueue() Y AKoMy nNopsaaKy OTPMMAEMO eNeMEHTI?

{

DelayQueue<Delayedltem> queue = new DelayQueue<>();

queue.put(new Delayedltem("Item1", 5, TimeUnit.SECONDS));
gueue.put(new Delayedltem("Item2", 10, TimeUnit. SECONDYS));
gueue.put(new Delayedltem("ltem3", 1, TimeUnit. SECONDS));

while (1queue.isEmpty()) {
Delayedltem item = null;
try {
item = queue.take();
} catch (InterruptedException e) {
throw new RuntimeException(e);
¥
System.out.printin("O6po6neno: " + item.getltem() + " na yac: " +
System.currentTimeMillis());

}
}

Merop take() B DelayQueue — 1ie Griokyrounii METO, SIKUiT BAKOPUCTOBYETHCSI ISl BUJTYYCHHS €JIEMEHTIB 13 uepru. el MmeTon yekae, MOKU He CTaHe
JOCTYITHUM €JIEMEHT i3 Yepr'H, TOOTO €JIEMEHT, Yac 3aTPUMKH SIKOTO cIutiB. Konu eneMeHT Moxke OyTH BHITydeHH# (TOOTO ioTro 3aTpuMKa 3akinumiacs), take()
MOBEPTAE LIEH €IEMEHT 1 BUJIAJISI€ IOr0 3 YEPTH.

Sx npamroe meron take() y DelayQueue:

Yekanus noctynHocti: Ko meton take() BUKITMKa€EThCs, BiH MEPIII 32 BCE MEPEBIPSIE, UM € B YeP3i €IIEMEHTH, JOCTYITHI JJIsl BUIyYEHHs, TOOTO Ti €IEMEHTH,
YUs 3aTPUMKA BXKE CIIMBIIA.

PoGota 3 GiioxyBaHHSIMHU: SIKIIO KOJCH €JIEMEHT He TOTOBUH (TOOTO BCi €JIEMEHTH BCE I MArOTh HEBIA'€MHHMIA Yac 3aTPUMKH), TTOTIK, SKui Bukaukae take(),
OJIOKY€ThCS 1 MEPEXOAUTH Y PEKUM OUiKyBaHHS. Lle ouikyBaHHS TpUBaTUME JAOTH, JOKH 3aTPUMKa MEPILIOTo eJIEMEHTa B Uep31 HE CIUIMBE.

[TpoOymxenHs Ta BuydeHHs . Konu Hactae dac 3atpuMku enementa, DelayQueue asromarnano "nipoOymkye" moTik, sskuit BuKkoHye oneparnuto take(). Meron
take() Toxi moBepTae el eneMeHT, BUITy4atouu HOTo 3 YePTH.

public String take() throws InterruptedException {
while (true) {
Delayedltem item = queue.peek();
if (item = null) {
long delay = item.getDelay();
if (delay <=0) {
return queue.poll().getlitem();
¥
synchronized (this) {
TimeUnit. MILLISECONDS .sleep(delay); // Yexaemo, moxu
CJICMCHT HC CTAHC JOCHAKHUM

}
}
}
}

Knac PriorityQueue<E> y Java - ue CTPYKTYpa AaHUX, AKa A03BONAE 3bepiratm enemeHTH Ta BUAY4aTH ix 3rigHo 3
NpUpoaHiMm nopsaakom abo 3a gonomoroto nopisHoBava (Comparator), AKLWO TakKMM BKa3aHUN. OCHOBHA 0CcObUBICTb
LbOro KNnacy NONAAra€ B TOMy, WO BiH peani3ye yepry 3 npioputeTamu, Ae i3 Yeprun 3aBXan BUIYYAETbCA €/IEMEHT i3
HamBULLMM npioputeTom. lna PriorityQueue miHiManbHUI enemeHT Ma€E HaUBULLLMIA NMPIOPUTET, AKLLO He BKA3aHO iHLWeE
yepes KomnapaTop.

Ocb OCHOBHI xapakmepucmuku PriorityQueue:

PriorityQueue Hachniayetbes Big AbstractQueue i peanisye iHTepdpenc Queue.

[ani B PriorityQueue 3a3Bunyan 36epiratotbea y Burnaai 6iHapHoi kynu. Lia cTpyKTypa AaHux 3abe3neyvye edpeKTUBHE
BUNYYEHHA MIHIMA/NIbHOTO e/IeMeHTY.

KOHCTpYyKTOpMU

PriorityQueue NnpornoHye AeKisibKa KOHCTPYKTOPIB:

PriorityQueue(): ctBoptoe PriorityQueue i3 noyaTkoBOK MicTKicTio 11.

PriorityQueue(int initialCapacity): ctBoptoe PriorityQueue i3 3aaHO0 NOYaTKOBOI MICTKICTHO.

PriorityQueue(int initialCapacity, Comparator<? super E> comparator): ctBoptoe PriorityQueue i3 3a4aH00 NOYaTKOBOIO
MICTKICTIO Ta KOMMapaToOpPOM.

PriorityQueue(Collection<? extends E> c): ctBoptoe PriorityQueue, L0 MiCTUTb efieMeHTH 3i cneumdpikoBaHOi KonekKuii.
PriorityQueue(PriorityQueue<? extends E> c), PriorityQueue(SortedSet<? extends E> ¢): KOHCTPYKTOpPUM ANA CTBOPEHHSA
PriorityQueue Ha 6a3i iHLWINX KONEeKL,il.

Memoodu

OcHoBHi onepaTtuBHi metoan Brkato4vatoTb offer(E e), poll(), peek() i remove(Object o).

offer(E e): BcTaBnA€ enemeHT y yepry.

poll(): BuAy4yae Ta NoBepPTaE FONIOBHUI ENEMEHT YEPTU, AKLLO Yepra He NOPOXKHA.

peek(): noBepTaeg, ane He BUYYAE FO/IOBHUIM €1IEMEHT YEPTH.

MeTtoau iterator() Ta sort() n03BONAIOTL iTEPYBATU YEPE3 €1IEMEHTU Ta COPTYBATM KyNy BiANOBiAHO.

Baxnusi Bigomocri

ITepauis Ha PriorityQueue He rapaHTye BUTATYBAHHA €/IEMEHTIB Y NOPAAKY iX NpioputeTy. AKLO HeobxiaHO nepebpaTtn
Kyny 3a NpiopuTeETOM, CANig BUAYYaTU enemeHTHn 3a gonomoroto poll().

PriorityQueue He aonyckae BcTtaBKku null.

LlAa cTPpYKTypa He € CMHXPOHI30BaHO0. [1na 6araTonoTo4HOro BUKOPUCTAHHA PEKOMEHAYETbCA 3aCTOCYBAaHHA METO/IB 3
Collections.synchronizedCollection() a6o BUKOPUCTAHHA KOHKYPEHTHUX CTPYKTYP, Takux Ak PriorityBlockingQueue.
PriorityQueue 4acTo BUKOPUCTOBYETLCA TaM, e eIeMEHTU NOBUHHI 06pobnATUCA Yy 3aN€XKHOCTI Bif, iX npioputeTy,
HanpuKknag, B anroputmax sk Dijkstra, yperyntoBaHHs 3aBAaHb 3a NPIOPUTETOM, Ta iH.

- . ~ public static void DemoPriorityQueue()
AKuli 6yoe o4iKysaHul pe3ynomam? {
SimplePriorityBlockingQueue<Integer> queue = new SimplePriorityBlockingQueue<>(5, Integer::compare);
Thread producer = new Thread(() -> {

import java.util.Comparator; int(] numbers = {5, 1. 3, 2, 4;

import java.util.PriorityQueue; for (int number : numbers) {
try {
public class SimplePriorityBlockingQueue<T> { System.out.printin("Producer putting value: " + number);

queue.put(number);
Thread.sleep(100);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

private final PriorityQueue<T> queue;
private final int capacity;

public SimplePriorityBlockingQueue(int capacity, Comparator<? }
super T> comparator) { }
this.capacity = capacity; b;
. . Thread consumer = new Thread(() -> {

this.queue = new PriorityQueue<>(comparator); try {

} Thread.sleep(500); //
} catch (InterruptedException e) {

public synchronized void put(T item) throws Thread.currentThread().interrupt();

InterruptedException { }

Whlle_(queue'SIZE() == capacity) { while (IThread.interrupted()) {
wait(); try {
} Integer value = queue.take();
queue.add(item); System.out.printIn("Consumer took value: " + value);
notifyAll(); Thread.sleep(150); .

} } catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;

public synchronized T take() throws InterruptedException { }
while (queue.isEmpty()) { }
wait(); h;
} . producer.start();
T item = queue.poll(); consumer.start();
notifyAll(); try {
return item; producer.join();
} consumer.join();

} } catch (InterruptedException e) {

e.printStackTrace();

}

VY Java, BukopucranHs String::compare 6e3mocepeHbo K MOCHIAHHS Ha METO. AJIs TOPIBHIHHS 00'eKTiB String HeMOXKIIMBE, OCKLIBKH Kitac String He mae
CTaTUYHOTO METOJY ITiJ Ha3Boro compare. [Iporte, kinac String y Java peainizye intepderic Comparable, mo o3Hauae, 1110 koxxeH ek3emiisip String Mae MeTo
compareTo, sikuii mopiBHIOE String 3 iHIIAM String 3a jJekcukorpadiuHUM MOPSIKOM.

Komnu Bam notpibern Comparator<String> s ctpykrypH, sik PriorityQueue, a6o Oyib-sAKkoi 1HIIIOT KOJIEKITii, 10 BUMArae sIBHUX KOMIIapaTopiB, BU MOXKETE

BUKOPHUCTATH MeTO COmpareTo y Bupasi iiM01a ab0 MOXKETe BUKOPUCTATH MOCHIaHHsa Ha MeToa Comparator.naturalOrder() mist mpupoIHOTO YHOPSAKYBaHHS
psankiB. Och SIK BU MOXKETE X BUKOPUCTOBYBATH

PriorityQueue<String> queue = new PriorityQueue<>((s1, s2) -> sl.compareTo(s2));

BuKopucTaHHA nocunaHHAa Ha meTtoa Comparator.naturalOrder(), AKMi1 noBepTae KOMNapaTop, WO BPAaXOBYE NPUPOAHUN
NopPAAOoK (AKMN AnA psagKiB € NneKcuKkorpadiyHMm NnopaaoK):

PriorityQueue<String> queue = new PriorityQueue<>(Comparator.naturalOrder());
Obunasa niaxoam BnopaaKoBytoTb 06'eKTM String y uepsi 3 npioputeTamu fekcmkorpadivyHo. AKLLO Bam NOTPIOHO

3abe3neynTn NopPsaAO0OK, HE3aNEXKHUMN Bif, PETICTPY, BU MOXeTe BUKopucTath String::compareTolgnoreCase abo
BU3HAYNTU cneundpiyHMM KomnapaTop:

SynchronousQueue

SynchronousQueue - 11e 0co0IMBHIA BU Ye€PTH, IKAH BUKOPHUCTOBYEThCS B Java 3 makeToM java.util.concurrent. Ha BiamiHy Bij iHIIHX Yepr,
SynchronousQueue He Mae 5k0IHOT BHYTPIIIHBOI EMHOCTI, HAaBITh BMICTUMOCTI B OJIMH eJIeMeHT. L{e 03Hauae, 1110 BcTaBKa eJIeMEeHTa y uepry Oyme
OJI0KOBaHa JI0 THX Iip, TOKH 1HIITUH MOTIK HE BIUIYYUTD L€ €JIEMEHT; aHAJIOT1YHO, BUIIYYEHHS 3 yepru Oy/e O6JJokoBaHe, TOKH 1HIINHI MOTIK HE BCTABUTh

CJIICMCHT.

[Mpusnadenns SynchronousQueue:
[{s1 yepra TUTIOBO BUKOPHUCTOBYETHCS B CUCTEMAX 3 BUCOKUM CTYIIEHEM CITUIBHOI B3a€EMO/I1i MI>K TTOTOKaMH, JI€ TIOTIK, 1[0 CTBOPIOE JaH1, Mae 0e3MoCcepeIHbO
NepenaBar ix MOTOKY, IKUH X 00po0iise. 3aBasKU IIbOMY 3a0€3MeUyeThCS AyKE TICHA CUHXPOHI3aIlisl MK IIOTOKaMHU, 1 MOTIK-CIIOKUBa4 MOXKE 0JIpa3y

00poOUTH JaH1, SIK TUTBKH T1 CTAHYTh IO HHOTO JOCTYITHUMH.

Oco6auBocti SynchronousQueue:

bnokyBanHs BcTaBku Ta BuiyueHHs. KoxkHa omepaitisi BCTaBKU OJIOKYETHCS 10 TUX IMip, TOKU 1HIITUHN MOTIK HE BUIYYUTh €JIEMEHT, 1 HABMaKH, KOJKHA
orepallisi BUIy4eHHs OJIOKYETHCS 0 TUX MIp, TOKU 1HITUN TOTIK HE BCTABUTH €JIEMEHT.

[Mpsima niepemada. SynchronousQueue onTuMizoBaHa JUIs IPSIMOI Tepeiadi JaHUX MiX MOTOKaMH, 1110 €()eKTHBHO BUKOPHCTOBYE CUCTEMHI PECypCH.
BukopucTanHs y concurrency-KOHCTPYKIisfx. Hepra 4acTo BUKOPHCTOBYETHCS B peaizailii BukoHaBumx ciayx0 (Executor Services), 3okpeMa y mynax

nmoTokiB, Takux sik CachedThreadPool.

public static class SynchronousQueueObjectLock<T> {
private T item = null;
private boolean hasltem = false;
private final Object lock = new Object(); // Lock for
synchronization

public void put(T value) throws InterruptedException {
synchronized (lock) {
while (hasltem) {

System.
out.printin(Thread.currentThread().getName()+ "Producer is
waiting");

lock.wait();

}

item = value; // Store item

hasltem = true; // Mark item as available
lock.notifyAll(); // Notify waiting consumers

public T take() throws InterruptedException {
synchronized (lock) {

while (!hasltem) { // Wait until an item is available
System. out.printIn("Consumer is waiting");
lock.wait();

}

T value = item; // Retrieve item

item = null; // Clear item

hasltem = false; // Mark as empty

lock.notifyAll(); // Notify waiting producers

return value;

public static class MySynchronousQueue<T> {
private T item = null;

public synchronized void put(T value) throws
InterruptedException {
while (item != null) {

System.
out.printin(Thread.currentThread().getName()+ "Producer is
waiting");

wait();

}
item = value;
notifyAll();

}

public synchronized T take() throws
InterruptedException {

while (item == null) {
System. out.printIn("Consumer is waiting");
wait();

}

T value = item;

item = null;

notifyAll();

return value;

1. F'apanmin, wio mineku 00un nomix 3minioe
CRINIbHY 3MIHHY

Mertoau put() i take() BUKOPHUCTOBYIOTB
synchronized (lock) {} ms Toro, 11106 suime oxun
MOTIK 3a pa3 MaB JAOCTYII 0 3MiHHOT item.

Lle 3amoGirae crany rouku (race condition), komu
KiJIbKa OTOKIB HAMAraroThCsl OJJHOYACHO 3MiHUTH
item.

2. Baokysanna ma ouixyeanns (lock.wait())
SIkno BUKITHKaEeThCs PUt(), Komu item Bike MicTHTB
snayenns (hasltem == true), moTtik-BUpOOHHK
YeKae.

Amarsoriyno, ko Bukiankaerses take(), komu item
e He noxanuit (hasltem == false), motik-
CIIOKHMBAY YEKae.

Buxmuk lock.wait(); 3mytiye moTik 3BiTbBHUTH
OJIOKYBaHHSI 1 YSKATH, MTOKH IHIINAN MOTIK BUKIAYE
lock.notifyAll();.

3. [Ipo0OymkeHHs TOTOKY, LIO0 OYiKy€e
(lock.notifyAll())

ITicas toro six put() momae enemMeHT y item, BiH
sukimkae lock.notifyAll();, mo6 po36yautu 6ymb-
SIKUH TIOTIK, sknii uekae Ha take().

Amnasoriuno, micis toro sk take() orpumye ta
ouwnmiae item, Bin Bukimkae lock.notifyAll();, mo6
po30yauTH OyIb-sKMil TIOTIK, sKuit yekae Ha put().

006'exm lock sukopucmosyemocsa ak cneyianvrui

MOHIMOP 011 CUHXPOHIZAUI.

synchronized (this), 610kye Bech eK3eMILISIp KIacy
MySynchronousQueue, 1o B OLIBIIOCTI BHIIAIKIB
ngoryctumo. OIHAK BHKOPHCTAHHS OKPEMOTO
o6'exra lock Hamae Ginplny THYYKICTH y pasi, AKIIO
B MaiOyTHROMY 10 Kiacy OyAyTh IOJaHi iHII
METOJIH, SIKi He TOTPeOYIOTh CHHXPOHI3aIlii.

10.
11.
12.
13.
14,

15.

NMumaHHA

[I{o Take GioKytOUl yepru B Java Ta siky npo0ieMy 0araTrornoTOKOBOTO IMIPOrpaMyBaHHS BOHU
PO3B’SI3YIOTH?

SIxi ocHOBHI BigMiHHOCTI Mixk iHTepdericamu BlockingQueue, TransferQueue ta BlockingDeque?

VY yomy nosisirae KoHIENI{isg OJJOKyBaHHS IpU poOOTI 3 YepraMu Ta AeKamu?

Sxi meTonu momaBanHs eteMeHTiB y BlockingQueue icuyrots 1 unMm BoHU BiApisHsioThes (add, offer,
put)?

K1 MeTOM OTPUMAHHS €JIEMEHTIB 13 OJIOKYI0UO1 YEPTH BUKOPUCTOBYIOTHCS Ta B SIKUX BUIAJKaX BOHU
onokyroth notik (poll, take, peek)?

Sk npairoroTh TaliM-ay Ty MPU BUKIKKY MeTo/1B offer 1 poll y Gnokyrounx ueprax?

SIxi ocobnmMBOCTI peaizariii Ta Bukopructanus kimacy ArrayBlockingQueue?

Jliisg sxux 3amad npusHadena DelayQueue Ta siki BUMOTH BHCYBarOThCS 0 €JEMEHTIB, IO B Hel
OIAIOTHCA?

Yuwm Bigpizasernes LinkedBlockingQueue Bix ArrayBlockingQueue 3 Touku 30py CTpyKTypH Ta
MPOTyKTUBHOCTI?

SIxi ocobmuBocTi mae PriorityBlockingQueue Ta sik y Hili BU3HaYa€THCS TOPSATOK OOPOOKH €JIEMEHTIB?
Y gomy crienudika podorn SynchronousQueue i oMy BoHa He 30epirae eJIeMeHTH?

SIxe mpuzHaueHHs inTepdericy TransferQueue i sk nparrorors metoau transfer() ta tryTransfer()?

Sxi moxxmuBocTi Hagae LinkedTransferQueue mopiBHSHO 31 3BHUaiHUMHU OJIOKYIOYHMH YEPTraMu?
Yum BlockingDeque Binpizuserses Big BlockingQueue Ta siki omepaliii 103BOJISIOTH IPAIFOBATH 3 000X
KIHI[IB CTPYKTYpH JTaHUX?

Ski cuenapii Bukopuctanus € Tunosumu i LinkedBlockingDeque y 6GararonorokoBux jomarkax?

