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зв'язку з використанням методів штучного інтелекту» 
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спеціальність: 126 «Інформаційні системи і технології», 

Науковий керівник: Поплавський О.А. 

 

Обсяг роботи. Кваліфікаційна випускова робота магістра складається з 5 

розділів, 138 сторінок, 12 рисунків, завдання, анотації, вступу, висновків та списку 

використаних джерел. 

Актуальність теми. Робота присвячена розробці інформаційної системи для 

виявлення шкідливого трафіку в мережах мобільного зв'язку з використанням 

методів штучного інтелекту. Актуальність теми зумовлена зростанням кількості 

кібератак на мережі мобільного зв'язку та необхідністю вдосконалення методів їх 

виявлення та запобігання. Сучасні методи моніторингу безпеки мережевого 

трафіку часто є недостатньо ефективними або вимагають значних часових та 

обчислювальних ресурсів. У відповідь на потребу пришвидшення процесу 

виявлення загроз та аномалій у мережевому трафіку, розробка інформаційної 

системи на базі методів штучного інтелекту є доречною. Система на основі 

штучного інтелекту пропонує швидке, точне та автоматизоване рішення для 

виявлення шкідливого трафіку в реальному часі. 

У вступі обґрунтовано актуальність теми, сформульовано мету та основні 

завдання роботи, визначено об'єкт і предмет дослідження, а також окреслено 

наукову новизну та практичну значущість отриманих результатів. 

У першому розділі «Розгортання мережі 5g» розглянуто опис мереж 

мобільного зв'язку, аналіз об'єкта дослідження — мережевий трафік та види загроз 
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інформаційній безпеці, класифікацію типів атак та методів їх виявлення, а також 

визначено цілі роботи та сформульовано задачу. 

У другому розділі «Методи виявлення атак та шкідоносного трафіку» 

описано постановку задачі машинного навчання для класифікації мережевого 

трафіку, розглянуто алгоритми та методи штучного інтелекту, що застосовуються 

для виявлення аномалій, а також представлено математичні моделі, необхідні для 

навчання нейронних мереж. 

У третьому розділі «Використання методів штучного інтелекту для 
виявлення шкідоносного трафіку» детально описано архітектуру нейронних мереж 
для аналізу мережевого трафіку, методи попередньої обробки даних, задачу 
класифікації та детекції аномалій у трафіку, а також метрики для оцінювання 
моделей машинного навчання. 

У четвертому розділі «Розробка інформаційної системи виявлення 
шкідливого трафіку» викладено етапи проектування бази даних для зберігання 
інформації про мережевий трафік та виявлені загрози, розроблено концептуальну 
та логічну моделі даних, а також представлено структуру таблиць та зв'язки між 
ними. 

У п'ятому розділі «Тестування та оцінка ефективності інформаційної 

системи» запропоновано архітектуру та концепцію побудови інформаційної 

системи, детально описано проектування та реалізацію її модулів, використані 

технології та фреймворки, а також наведено тестовий приклад роботи системи з 

демонстрацією виявлення шкідливого трафіку. 

Ключові слова: штучний інтелект, машинне навчання, мережевий трафік, 

кібербезпека, виявлення аномалій, мережі мобільного зв'язку, нейронні мережі, 

класифікація трафіку. 

Keywords: artificial intelligence, machine learning, network traffic, cybersecurity, 

anomaly detection, mobile networks, neural networks, traffic classification. 

Якість оформлення проекту. Кваліфікаційна випускна робота магістра 

оформлена у відповідності до діючих нормативних документів та методичних 

вказівок до виконання дипломних робіт для студентів спеціальності 126 

«Інформаційні системи і технології». 
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Загальний висновок стосовно роботи та присвоєння авторові освітньо-

кваліфікаційного рівня «магістр». Робота виконана на високому рівні, студент 

продемонстрував високий рівень теоретичної підготовки та сформованих 

практичних навичок в області сучасних інформаційних технологій. Заслуговує 

оцінки «добре». 
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АНОТАЦІЯ 

 

Коржов М.С. «Інформаційна система виявлення шкідливого трафіку в 

мережах мобільного зв'язку з використанням методів штучного інтелекту» 

Кваліфікаційна випускна робота магістра за спеціальністю: 126 

«Інформаційні системи і технології». – Київський національний університет 

будівництва та архітектури. – Київ, 2025. 

Робота присвячена розробці системи виявлення шкідливого трафіку в 

мережах мобільного зв'язку з використанням методів штучного інтелекту. Мета 

полягає у створенні інтегрованої системи, що використовує машинне навчання для 

виявлення загроз. Розроблена система здатна функціонувати в режимі реального 

часу успішно виявляючи як відомі, так і нові форми мережевих атак. 

Ключові слова: мережа 5G, виявлення вторгнень, нейронні мережі, 

кібербезпека, виявлення аномалій.  

 

SUMMARY 

 
Korzhov M.S. “Information System for Detecting Malicious Traffic in Mobile 

Communication Networks Using Artificial Intelligence Methods” 

Master’s qualification thesis in the specialty 126 “Information Systems and 

Technologies.” – Kyiv National University of Construction and Architecture. – Kyiv, 

2025. 

The thesis is devoted to the development of an information system for detecting 

malicious traffic in mobile communication networks using artificial intelligence 

methods. The aim of the work is to create an integrated system that employs machine 

learning algorithms for threat detection. The developed system is capable of operating 

in real time, successfully identifying both known and previously unknown forms of 

network attacks. 

Keywords: 5G network, intrusion detection, artificial intelligence, cybersecurity, 

anomaly detection 



 

 

9 

Зміст 
ПЕРЕЛІК СКОРОЧЕНЬ ........................................................................................................................ 11 

ВСТУП ................................................................................................................................................ 13 

1. РОЗГОРТАННЯ МЕРЕЖІ 5G ........................................................................................................... 16 

1.1. Архітектура мережі 5G та основні компоненти ................................................................................... 16 
1.1.1 Архітектура мережі 5G ........................................................................................................ 16 

1.1.2. Особливості проектування та планування 5G .................................................................. 17 

1.1.3 Базова мережа ....................................................................................................................... 20 

1.1.4 Схема архітектури 5G .......................................................................................................... 20 

1.1.5 Еволюція 5G ......................................................................................................................... 25 

1.2 Основні характеристики мережі 5G ....................................................................................................... 26 

1.3 Основні вразливості мережі 5G та атаки на неї .................................................................................... 27 

1.4 Висновки за розділом 1 ........................................................................................................................... 28 

2. МЕТОДИ ВИЯВЛЕННЯ АТАК ТА ШКІДОНОСНОГО ТРАФІКУ ........................................................ 30 

2.1  Типи  та ознаки зловмисної мережевої активності .............................................................................. 30 

2.2 Види атак на мережі 5G .......................................................................................................................... 33 

2.3 Інструменти та методи виявлення атак та шкідоносного трафіку ...................................................... 38 
2.3.1 Системний підхід до виявлення шкідливого трафіку ...................................................... 39 

2.4 Висновки за розділом 2 ........................................................................................................................... 41 

3. ВИКОРИСТАННЯ МЕТОДІВ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ ВИЯВЛЕННЯ ШКІДОНОСНОГО ТРАФІКУ43 

3.1 Огляд типів та сфер застосування машинного навчання ..................................................................... 43 

3.2 Огляд методів штучного інтелекту ........................................................................................................ 45 

3.3 Висновки за розділом 3 ........................................................................................................................... 56 

4. РОЗРОБКА ІНФОРМАЦІЙНОЇ СИСТЕМИ ВИЯВЛЕННЯ ШКІДЛИВОГО ТРАФІКУ .......................... 57 

4.1 Архітектура інформаційної системи ...................................................................................................... 57 
4.1.1. Функціональні та нефункціональні вимоги до системи .................................................. 57 

4.1.2. Загальна архітектура системи ............................................................................................ 60 

4.1.3. Компоненти системи та їх призначення ........................................................................... 63 

4.1.4. Діаграма компонентів системи .......................................................................................... 65 

4.1.5. Діаграма послідовності обробки трафіку ......................................................................... 66 

4.1.6. Діаграма розгортання системи ........................................................................................... 67 

4.1.7. Інтеграційні інтерфейси ..................................................................................................... 68 

4.1.8. REST API інтерфейс для зовнішніх систем ...................................................................... 69 

4.1.9. Висновки до підрозділу 4.1 ................................................................................................ 70 

4.2 Опис датасету та його характеристики .................................................................................................. 71 
4.2.1. Загальна характеристика датасету 5G-NIDD ................................................................... 71 

4.2.2. Структура та класи атак у датасеті .................................................................................... 71 

4.2.3. Ознаки (features) датасету .................................................................................................. 73 



 

 

10 

4.2.4. Підготовка датасету для системи ...................................................................................... 74 

4.3 Реалізація програмного прототипу інформаційної системи ................................................................ 76 
4.3.1. Архітектура програмного забезпечення ........................................................................... 76 

4.3.2. Взаємодія компонентів системи ........................................................................................ 86 

4.3.3. Інтеграційні інтерфейси ..................................................................................................... 89 

4.3.4. Управління моделями машинного навчання .................................................................... 91 

4.4 Висновки за розділом 4 ........................................................................................................................... 92 

5. ТЕСТУВАННЯ ТА ОЦІНКА ЕФЕКТИВНОСТІ ІНФОРМАЦІЙНОЇ СИСТЕМИ ...................................... 94 

5.1 Порівняльний аналіз ефективності алгоритмів класифікації трафіку ................................................ 94 

5.2 Опис тестового набору даних та розподіл класів ................................................................................. 97 

5.3 Результати оцінки точності компонентів системи .............................................................................. 100 
5.3.1. Продуктивність модуля Random Forest .......................................................................... 100 

5.3.2. Продуктивність модуля Artificial Neural Networks ........................................................ 103 

5.3.3. Продуктивність модуля k-Nearest Neighbors .................................................................. 106 

5.4 Оптимізація параметрів компонентів системи .................................................................................... 107 
5.4.1. Підбір гіперпараметрів Random Forest ........................................................................... 107 

5.4.2. Налаштування архітектури ANN ..................................................................................... 109 

5.4.3. Оптимізація KNN параметрів .......................................................................................... 110 

5.5 Аналіз матриць плутанини для компонентів системи ........................................................................ 111 
5.5.1. Confusion Matrix для модуля Random Forest .................................................................. 111 

5.5.2. Confusion Matrix для модуля Artificial Neural Networks ................................................ 113 

5.5.3. Confusion Matrix для модуля KNN .................................................................................. 114 

5.5.4. Порівняльний аналіз ROC-AUC ...................................................................................... 115 

5.6 Оцінка продуктивності інформаційної системи в цілому .................................................................. 117 

5.7 Порівняння розробленої системи з існуючими рішеннями ............................................................... 122 
5.8 Висновки за розділом 5 ........................................................................................................ 126 

ЗАГАЛЬНІ ВИСНОВКИ ..................................................................................................................... 129 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ............................................................................................... 133 

ДОДАТОК А ПРИЗЕНТАЦІЯ ............................................................................................................. 137 
 
 

 

 

 

 

 

 



 

 

11 

ПЕРЕЛІК СКОРОЧЕНЬ 

 

3GPP – Third Generation Partnership Project (альянс організацій для розробки 

стандартів телекомунікаційних систем третього покоління). 

5G – Fifth Generation (п'яте покоління мобільних мереж зв'язку). 

AI – Artificial Intelligence (технології, що імітують інтелектуальні дії людини). 

ANN – Artificial Neural Networks (штучні нейронні мережі для моделювання 

складних процесів). 

CN – Core Network (основна інфраструктура мережі зв'язку). 

CoS – Class of Service (класифікація послуг у мережах передачі даних). 

DiffServ – Differentiated Services (система диференційованої якості 

обслуговування). 

DPI – Deep Packet Inspection (технологія детального аналізу мережевих пакетів). 

eMBB – Enhanced Mobile Broadband (розширений мобільний широкосмуговий 

зв'язок). 

eNB – Evolved Node B (удосконалена версія базової станції LTE). 

EPC – Evolved Packet Core (інфраструктура основної мережі LTE/5G). 

gNB – Next Generation Node B (базова станція мережі 5G). 

GPRS – General Packet Radio Service (технологія пакетної передачі даних у 

мобільних мережах GSM). 

GSM – Global System for Mobile Communications (глобальний стандарт мобільного 

зв'язку). 

IntServ – Integrated Services (інтегровані послуги з управління якістю 

обслуговування). 

IoT – Internet of Things (інтернет речей — мережа взаємодії фізичних пристроїв 

через інтернет). 

IP – Internet Protocol (основний протокол передавання даних у мережі). 

KNN – k-Nearest Neighbors (алгоритм класифікації «k найближчих сусідів»). 

LTE – Long-Term Evolution (стандарт бездротової високошвидкісної передачі 

даних). 
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MNO – Mobile Network Operator (оператор мобільного зв'язку). 

MIMO – Multiple Input Multiple Output (технологія передачі даних із багатьма 

антенами). 

mMTC – Massive Machine-Type Communications (масовий зв'язок між пристроями). 

MT – Mobile Terminal (мобільний термінал або пристрій користувача). 

NSA – Non-Standalone (неавтономна архітектура мережі 5G). 

QoS – Quality of Service (якість обслуговування в телекомунікаціях). 

RAN – Radio Access Network (мережа радіодоступу для мобільних пристроїв). 

RF – Random Forest (алгоритм випадкового лісу для класифікації даних). 

RSVP – Resource Reservation Protocol (протокол резервування ресурсів у мережах). 

SA – Standalone (автономна архітектура мережі 5G). 

SDN – Software-Defined Networking (мережа з програмно-визначеним 

управлінням). 

SVM – Support Vector Machine (алгоритм опорних векторів для класифікації). 

TCP – Transmission Control Protocol (протокол керування передачею). 

UE – User Equipment (обладнання користувача, наприклад смартфони або 

планшети). 

UMTS – Universal Mobile Telecommunications System (універсальна система 

мобільного зв'язку). 

URLLC – Ultra-Reliable Low Latency Communication (наднадійний зв'язок із 

низькою затримкою). 

DoS – Denial of Service (атака на відмову в обслуговуванні). 
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ВСТУП 

 

Оцінка сучасного стану об’єкта розробки. Сучасний етап розвитку 

телекомунікаційних технологій характеризується масштабним впровадженням 

мереж п'ятого покоління (5G), що забезпечують якісно новий рівень швидкості 

передачі даних, мінімальну затримку сигналу та високу пропускну здатність. 

Мережі 5G стають технологічною основою для цифрової трансформації економіки 

та суспільства, відкриваючи нові можливості для інтеграції інформаційних 

технологій у транспортну інфраструктуру, медицину, промислове виробництво, 

системи розумних міст та численні інші сфери людської діяльності. 

Проте стрімке зростання можливостей мережевої інфраструктури 

супроводжується пропорційним збільшенням векторів кібератак та загроз 

інформаційній безпеці. Архітектура мереж 5G, попри передові механізми захисту, 

створює розширену поверхню атак через підвищену складність мережевої 

топології, велику кількість підключених пристроїв та нові протоколи взаємодії. 

Виявлення та нейтралізація шкідливого трафіку набувають критичного значення 

для забезпечення стабільного функціонування мережевої інфраструктури та 

захисту конфіденційних даних користувачів. До категорій шкідливого трафіку 

належать розподілені атаки типу відмова в обслуговуванні (DDoS), програми-

здирники, троянське програмне забезпечення, шпигунські застосунки та інші 

форми мережевої активності, що становлять серйозну загрозу як для 

індивідуальних користувачів, так і для корпоративного сегмента. 

Традиційні підходи до забезпечення кібербезпеки базуються на використанні 

окремих алгоритмів та методів виявлення загроз. Однак ефективний захист мереж 

5G потребує не лише застосування передових алгоритмів машинного навчання, а й 

створення комплексних інформаційних систем, що інтегрують процеси збору та 

аналізу трафіку, прийняття рішень щодо класифікації загроз та автоматизованого 

реагування на інциденти безпеки. Така система повинна мати модульну 

архітектуру, забезпечувати масштабованість відповідно до зростання мережевого 
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навантаження та демонструвати здатність адаптуватися до нових типів кіберзагроз 

у режимі реального часу. 

Технології штучного інтелекту довели свою ефективність у вирішенні завдань 

аналізу великих обсягів даних, виявлення аномалій та класифікації мережевого 

трафіку. Алгоритми машинного навчання дозволяють будувати інтелектуальні 

системи захисту, здатні автоматично виявляти патерни шкідливої активності з 

високою точністю. Інтеграція методів штучного інтелекту в архітектуру 

інформаційних систем безпеки створює можливість підвищити рівень захищеності 

мереж, знизити ймовірність успішних атак та забезпечити безперервність 

функціонування критичної інфраструктури. 

Розробка та впровадження інформаційних систем виявлення шкідливого 

трафіку є одним із пріоритетних напрямів забезпечення кібербезпеки мереж 5G. У 

цьому контексті важливим є системний підхід, що охоплює проектування 

архітектури системи, вибір оптимальних алгоритмів штучного інтелекту, розробку 

інтеграційних інтерфейсів та механізмів взаємодії з мережевою інфраструктурою 

оператора. Такий підхід дозволяє не лише вирішувати поточні завдання 

кібербезпеки, але й формувати технологічну платформу для протидії майбутнім 

загрозам. 

Мета й завдання роботи. Метою кваліфікаційної роботи є розробка 

архітектури та реалізація програмного прототипу інформаційної системи 

виявлення шкідливого трафіку в мережах мобільного зв'язку 5G з використанням 

методів штучного інтелекту, а також оцінка її ефективності за критеріями точності 

класифікації, швидкодії та адаптивності до різних типів загроз. 

Наукова новизна визначається розробленою архітектурою інформаційної 

системи, що інтегрує множинні алгоритми машинного навчання (Random Forest, 

штучні нейронні мережі, метод k-найближчих сусідів) та забезпечує механізм 

адаптивного вибору оптимального методу аналізу залежно від типу загрози та умов 

функціонування мережі. Запропонований системний підхід дозволяє підвищити 

ефективність виявлення шкідливого трафіку в умовах високої динаміки 

мережевого навантаження, характерного для мереж 5G. 
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Практична значущість роботи полягає у створенні програмного прототипу 

інформаційної системи, який може бути впроваджений операторами мобільного 

зв'язку для захисту мереж 5G від сучасних кіберзагроз. Розроблена система 

забезпечує автоматизоване виявлення шкідливого трафіку в режимі реального 

часу, що дозволяє оперативно реагувати на інциденти безпеки, мінімізувати 

потенційні збитки та підтримувати високий рівень якості надання 

телекомунікаційних послуг в умовах зростаючої кількості та складності кібератак. 
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1. РОЗГОРТАННЯ МЕРЕЖІ 5G 

1.1. Архітектура мережі 5G та основні компоненти 

1.1.1 Архітектура мережі 5G 

 

Технологія мобільного зв'язку п'ятого покоління (5G)  із притаманною їй 

складною мережевою архітектурою демонструє потенціал для підтримки тисяч 

інноваційних застосунків як у споживчій, так і в промисловій сферах. 

Характеристики 5G, що включають експоненціально вищу швидкість передачі 

даних та пропускну здатність порівняно з існуючими мережами, створюють 

фундамент для трансформаційних змін у багатьох галузях. 

Застосування технології 5G охоплює різноманітні вертикальні ринки, 

зокрема промисловість, охорону здоров'я та транспортну інфраструктуру. У цих 

секторах мережі п'ятого покоління відіграють ключову роль у впровадженні 

передових систем автоматизації виробничих процесів та реалізації концепції 

повністю автономного транспорту. Розуміння архітектурних основ мережі 5G є 

необхідною умовою для розробки ефективних бізнес-моделей та інноваційних 

додатків, що базуються на цій технології. 

Фундаментом архітектури мережі 5G є стандарти, визначені проектом 

партнерства третього покоління (3GPP) - міжнародною організацією, 

відповідальною за розробку стандартів усіх типів мобільного зв'язку. Міжнародний 

союз електрозв'язку (МСЕ) та його партнерські організації формулюють технічні 

вимоги та часові рамки для систем мобільного зв'язку, визначаючи нове покоління 

приблизно з десятирічним інтервалом. 

Літера «G» у позначенні 5G символізує термін "покоління". Архітектурне рішення 

5G представляє суттєвий еволюційний крок у порівнянні з технологією 4G LTE, 

яка, у свою чергу, є наступником систем 3G та 2G. Співіснування 5G з попередніми 

поколіннями мереж зумовлене двома ключовими факторами: 

Проектування та розгортання нових мережевих технологій потребує значних 

часових ресурсів, капіталовкладень та координації зусиль провідних організацій і 

операторів телекомунікаційного ринку. 
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Користувачі, що орієнтуються на інновації, прагнуть якнайшвидше отримати 

доступ до нових технологічних можливостей, тоді як оператори, які здійснили 

суттєві інвестиції в існуючу інфраструктуру мереж 2G, 3G та 4G LTE, зацікавлені 

в максимальному використанні цих вкладень до повної готовності нової мережі. 

Мережева архітектура мобільної технології 5G демонструє значні 

удосконалення порівняно з попередніми архітектурними рішеннями. Розгалужені 

мережі з високою щільністю базових станцій забезпечують кардинальне 

підвищення продуктивності. Додатково, архітектура мереж 5G пропонує 

підвищений рівень захисту інформації порівняно з поточними мережами 4G LTE. 

Технологія 5G характеризується трьома фундаментальними перевагами: 

– Підвищена швидкість передачі даних, що досягає значень у кілька гігабіт за 

секунду; 

– Розширена ємність мережі, що забезпечує функціонування величезної 

кількості пристроїв Інтернету речей на одиницю площі; 

– Мінімальна затримка сигналу, що може становити одиниці мілісекунд і є 

критично важливою для таких застосувань, як підключені транспортні засоби в 

інтелектуальних транспортних системах та автономний транспорт, де потрібна 

майже миттєва реакція системи. 

 

1.1.2. Особливості проектування та планування 5G 

 

Розробка архітектури мережі 5G, здатної підтримувати високонавантажені 

застосунки, є складним інженерним завданням. Відсутність універсального 

підходу пояснюється широким спектром застосувань, які вимагають передачі 

даних на різні відстані, обробки великих обсягів інформації або їх комбінації. 

Відповідно, архітектура 5G повинна забезпечувати підтримку низько-, середньо- та 

високочастотного спектра з ліцензованих, спільних та приватних джерел для 

реалізації повного потенціалу технології (рис. 1.1). 

З огляду на це, архітектура 5G спроектована для роботи в радіочастотному 

діапазоні від 1 ГГц до надвисоких частот, що отримали назву «міліметрові хвилі» 
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(mmWave). Залежність між частотою та відстанню поширення сигналу є обернено 

пропорційною: нижчі частоти забезпечують більшу дальність поширення, тоді як 

вищі частоти дозволяють передавати більші обсяги даних. 

 
Рисунок .1.1. Спектри архітектури 5G 

 

Архітектура мереж 5G базується на трьох основних частотних діапазонах: 

– високочастотний діапазон 5G (mmWave) забезпечує найвищі робочі частоти 

5G в діапазоні від 24 ГГц до приблизно 100 ГГц. Через обмежену здатність високих 

частот проникати крізь фізичні перешкоди, високочастотний 5G характеризується 

невеликим радіусом дії. Додатково, покриття mmWave є локалізованим і потребує 

щільнішої стільникової інфраструктури; 

– середній діапазон 5G функціонує в діапазоні 2-6 ГГц і забезпечує необхідну 

ємність для урбанізованих та приміських територій. Пікові швидкості передачі 

даних у цьому діапазоні досягають сотень мегабіт за секунду; 

– низький діапазон 5G працює на частотах нижче 2 ГГц і забезпечує 

широкомасштабне покриття території. Цей діапазон використовує спектр, який 

наразі доступний і застосовується для 4G LTE, фактично забезпечуючи архітектуру 

LTE для пристроїв 5G, готових до використання. Таким чином, продуктивність 

низькочастотного діапазону 5G є порівнянною з 4G LTE та підтримує 

функціонування пристроїв, які вже присутні на ринку. 
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Окрім доступності спектра та вимог застосунків щодо дальності та 

пропускної здатності, оператори повинні враховувати енергетичні вимоги 5G, 

оскільки типова конструкція базової станції 5G потребує більш ніж подвоєної 

потужності порівняно з базовою станцією 4G. 

Для повної реалізації потенціалу 5G необхідна еволюція мережевої 

інфраструктури. Діаграма нижче ілюструє часову міграцію та плани розвитку 

продуктів 5G (рис. 1.2). 

 

 
Рисунок .1.2. Плани на продукти 5G 

 

Початкові впровадження технології 5G не будуть виключно базуватися на 

5G, а з'являться в застосунках, де зв'язок розподіляється з існуючою мережею 4G 

LTE у так званому неавтономному режимі (NSA). При роботі в цьому режимі 

пристрій спочатку встановлює з'єднання з мережею 4G LTE, а за наявності доступу 

до мережі 5G може використовувати її для отримання додаткової пропускної 

здатності. Наприклад, пристрій, що підключається в режимі 5G NSA, може 

отримати швидкість завантаження 200 Мбіт/с через 4G LTE та додатково 600 

Мбіт/с через 5G одночасно, що сумарно становить 800 Мбіт/с. 

У міру розширення мережевої інфраструктури 5G протягом наступних років 

відбуватиметься її еволюція для забезпечення автономного режиму (SA) виключно 
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для 5G. Це забезпечить низьку затримку та можливість підключення великої 

кількості пристроїв Інтернету речей, що є ключовими перевагами технології 5G. 

 

1.1.3 Базова мережа 

 

Базова мережа 5G, що забезпечує розширену функціональність мереж п'ятого 

покоління, є одним із трьох основних компонентів системи 5G, також відомої як 

5GS. Два інші компоненти - це мережа доступу 5G (5G-AN) та користувацьке 

обладнання (UE). Ядро 5G використовує хмарно-орієнтовану архітектуру на основі 

сервісів (SBA) для підтримки автентифікації, безпеки, управління сеансами та 

агрегації трафіку від підключених пристроїв, що вимагає складної взаємодії 

мережевих функцій, як показано на схемі ядра 5G. 

Архітектура ядра 5G включає наступні ключові компоненти: 

– функція користувацької площини (UPF); 

– мережа передачі даних (DN), наприклад, послуги оператора, доступ до 

Інтернету або послуги третіх сторін; 

– основна функція управління доступом і мобільністю (AMF); 

– функція сервера автентифікації (AUSF); 

– функція управління сеансами (SMF); 

– функція вибору сегмента мережі (NSSF); 

– функція виявлення можливостей мережі (NEF); 

– функція репозиторію мережевих функцій (NRF); 

– функція управління політиками (PCF); 

– уніфіковане управління даними (UDM); 

– функція додатків (AF) 

Наведена нижче схема архітектури мережі 5G (рис. 1.3) ілюструє взаємозв'язок цих 

компонентів. 

 

1.1.4 Схема архітектури 5G 
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На наступній діаграмі топології мережі 5G представлені ключові компоненти 

базової мережі 5G та загальна мережева архітектура (рис. 1.3, рис.1.4): 

 

 
Рисунок 1.3 Ключові компоненти інфраструктури 5G 

 
Рисунок 1.4. Загальна архітектура мережі 5G 

 

Детальний опис функціональних компонентів: 

– функція користувацької площини (UPF): виконує функції пересилання даних 

і маршрутизації пакетів у мережевій інфраструктурі 5G. Відповідає за ефективну 

передачу пакетів даних користувача між обладнанням користувача (UE) та 

зовнішніми мережами або сервісами. UPF забезпечує мінімальну затримку, високу 

пропускну здатність та надійну доставку даних, що робить цей компонент 

критично важливим для підтримки застосунків з високими вимогами до пропускної 
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здатності, таких як потокове мультимедіа, ігрові платформи та віртуальна 

реальність;[1] 

– функція управління сеансами (SMF): відповідає за керування 

користувацькими сеансами та потоками даних у мережі 5G. Встановлює та 

підтримує контекстну інформацію для активних сеансів, включаючи 

ідентифікатори користувачів, вимоги до якості обслуговування (QoS) та стани 

сеансів. SMF координує взаємодію з іншими мережевими функціями для розподілу 

ресурсів, застосування політик та оптимізації продуктивності сеансу на основі 

динамічних умов трафіку та вимог користувачів; 

– функція управління доступом і мобільністю (AMF): керує функціями доступу 

та мобільності, включаючи процедури реєстрації, автентифікації та передачі 

обслуговування. Автентифікує користувачів, авторизує доступ до мережевих 

сервісів та управляє подіями мобільності, наприклад, перемиканням між різними 

технологіями доступу або мережевими сегментами. AMF забезпечує безперервне 

підключення для користувачів, які переміщуються між різними мережевими 

зонами або перемикаються між стільниковими та нестільниковими технологіями 

доступу; 

– функція управління політиками (PCF): відповідає за виконання мережевих 

політик та угод про рівень обслуговування (SLA) у мережі 5G. Динамічно 

розподіляє ресурси, застосовує правила QoS та забезпечує виконання політик 

управління трафіком на основі профілів користувачів, вимог до послуг та 

мережевих умов. PCF відіграє критичну роль в оптимізації використання ресурсів, 

визначенні пріоритетів критичного трафіку та забезпеченні справедливого 

розподілу мережевих ресурсів між різними користувачами та застосунками; 

– функція сервера автентифікації (AUSF): здійснює автентифікацію 

користувачів і пристроїв, які звертаються до мережі 5G, верифікуючи їхні 

ідентифікаційні дані та облікові записи. Безпечно зберігає автентифікаційну 

інформацію, таку як користувацькі ідентифікатори, паролі та криптографічні 

ключі, та перевіряє запити користувачів на мережевий доступ. AUSF забезпечує 
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цілісність і безпеку процесу автентифікації, захищаючи від несанкціонованого 

доступу та викрадення особистих даних; 

– функція уніфікованого управління даними (UDM): керує ідентифікацією 

користувачів та інформацією про підписку в мережі 5G. Зберігає користувацькі 

профілі, підписки на послуги та облікові дані для автентифікації, забезпечуючи 

безперебійний доступ до мережевих сервісів та застосунків. UDM полегшує 

надання персоналізованих послуг, автентифікацію користувачів та управління 

ідентифікацією в різних мережевих функціях і доменах; 

– віртуалізація мережевих функцій (NFV): є критичним елементом архітектури 

базової мережі 5G, що забезпечує віртуалізацію мережевих функцій, які традиційно 

реалізовувалися як спеціалізовані апаратні пристрої. Відокремлюючи програмне 

забезпечення від апаратної платформи, NFV знижує витрати, підвищує гнучкість 

та прискорює впровадження інновацій, дозволяючи операторам ефективніше 

розгортати та масштабувати мережеві функції. 

Додатково, архітектура може включати інші мережеві функції та елементи, 

такі як функція відкриття мережевих можливостей (NEF), функція репозиторію 

мережевих функцій (NRF) та функція вибору мережевого сегмента (NSSF), кожна 

з яких виконує специфічну роль у забезпеченні розширених можливостей мереж 

5G. 

Додаткові ключові функції: 

– функція відкриття мережевих можливостей (NEF): є ключовим елементом 

базової мережі 5G, що забезпечує контрольований доступ до мережевих сервісів та 

можливостей для авторизованих сторонніх застосунків, сервісів та постачальників 

послуг. Функціонує як шлюз, відкриваючи мережеві можливості через 

стандартизовані інтерфейси прикладного програмування (API) для зовнішніх 

суб'єктів; 

– функція репозиторію мережевих функцій (NRF): слугує центральним 

сховищем у базовій мережі 5G, що зберігає та розповсюджує інформацію щодо 

доступності та характеристик мережевих функцій. Це дозволяє мережевим 

функціям динамічно виявляти одна одну та взаємодіяти між собою; 
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– функція вибору мережевого сегмента (NSSF): відіграє критичну роль у 

сегментації мережі, сприяючи вибору та створенню екземплярів мережевих 

сегментів, адаптованих до специфічних вимог послуг та користувацьких переваг. 

Це забезпечує динамічне створення, розподіл та управління мережевими 

сегментами в межах базової мережі 5G. 

Таким чином, NEF, NRF та NSSF є критично важливими компонентами 

архітектури базової мережі 5G, що відіграють різні, проте взаємодоповнюючі ролі 

у забезпеченні динамічної оркестрації сервісів, управління ресурсами та 

сегментації мережі. Разом вони надають операторам можливість пропонувати 

широкий спектр інноваційних послуг та застосунків, одночасно забезпечуючи 

ефективне використання мережевих ресурсів та дотримання угод про рівень 

обслуговування. 

 Принцип функціонування мережі: 

– користувацьке обладнання (UE), таке як смартфони 5G або мобільні пристрої 

5G, підключаються через нову мережу радіодоступу 5G до ядра 5G і далі до мереж 

передачі даних (DN), таких як Інтернет; 

– функція управління доступом і мобільністю (AMF) виступає як єдина точка 

входу для підключення UE; 

– на основі сервісу, який запитує UE, AMF обирає відповідну функцію 

управління сеансами (SMF) для керування користувацьким сеансом; 

– функція користувацької площини (UPF) транспортує трафік IP-даних 

(площина користувача) між користувацьким обладнанням (UE) та зовнішніми 

мережами; 

– функція сервера автентифікації (AUSF) дозволяє AMF автентифікувати UE 

та надавати доступ до сервісів ядра 5G; 

– інші функції, такі як функція управління сеансами (SMF), функція управління 

політикою (PCF), функція застосунків (AF) та функція уніфікованого управління 

даними (UDM), забезпечують структуру управління політиками, застосовуючи 

політичні рішення та отримуючи доступ до інформації про підписку для керування 

поведінкою мережі. 
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1.1.5 Еволюція 5G 

 

Кожне покоління бездротового зв'язку (рис. 1.5), або «G», розвивається 

протягом приблизно десятирічного періоду. Перехід між поколіннями в основному 

зумовлений потребою операторів ефективно використовувати або 

перепрофілювати обмежену кількість доступного спектра. Кожне наступне 

покоління характеризується підвищеною спектральною ефективністю, що дозволяє 

швидше та ефективніше передавати дані через мережу.

 
Рис.1.5. Еволюція поколінь мобільних мереж 

 

Перше покоління бездротового зв'язку, або 1G, з'явилося в 1980-х роках на 

базі аналогової технології. За ним швидко послідувало 2G - перше покоління 

мереж, що використовувало цифрову технологію. Зростання 1G та 2G спочатку 

стимулювалося ринком мобільних телефонів. 2G також пропонувало передачу 

даних, проте на вкрай низьких швидкостях. 

Наступне покоління, 3G, почало розвиватися на початку 2000-х років. 

Зростання 3G знову було зумовлене мобільними телефонами, але це була перша 

технологія, яка пропонувала швидкість передачі даних у діапазоні 1 мегабіт на 

секунду (Мбіт/с), що було достатнім для різноманітних нових застосунків як на 

смартфонах, так і для екосистеми Інтернету речей (IoT), яка тільки зароджувалася. 

Поточне покоління бездротової технології 4G LTE почало розвиватися в 2010 році. 
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Важливо зазначити, що 4G LTE (довгострокова еволюція) має тривалу 

перспективу використання; це надзвичайно успішна та зріла технологія, яка, за 

прогнозами, буде широко застосовуватися щонайменше протягом наступного 

десятиліття. 

 

1.2 Основні характеристики мережі 5G 

 

Ключові характеристики мереж 5G включають підвищену швидкість 

передачі даних, зменшену затримку, збільшену пропускну здатність та можливість 

сегментації мережі. 

Підвищена швидкість може бути експоненціально вищою, ніж у 4G. Пікова 

швидкість може досягати 10 гігабіт на секунду (Гбіт/с) або вище, що забезпечує 

швидке завантаження та майже миттєве підключення. 

Зменшена затримка мережі 5G суттєво скорочують затримку, забезпечуючи 

надчуйливе з'єднання, що є критично важливим для ігор у реальному часі та 

застосунків віртуальної реальності. 

Збільшена пропускна здатність мережі 5G можуть обслуговувати численні 

підключені пристрої одночасно. Це робить їх ідеальними для територій з високою 

щільністю населення та підтримує зростаючу кількість розумних пристроїв 

(Інтернет речей). 

Сегментація мережі дозволяє створювати спеціалізовані «сегменти» мережі, 

адаптовані до конкретних застосунків. Це може гарантувати стабільну 

продуктивність для критично важливих сервісів, таких як автономні транспортні 

засоби або дистанційна хірургія. 

З появою кожної нової технології вона приносить переваги як користувачам, 

так і організаціям. Деякі з ключових переваг включають: 

– трансформація галузей: швидкість, надійність, низька затримка та мережева 

архітектура 5G можуть потенційно трансформувати такі галузі, як охорона 

здоров'я, промисловість, транспорт та інші; 
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– покращений мобільний досвід: надвисока швидкість завантаження, ігри без 

затримок, безперебійне потокове відео та захоплюючий досвід 

доповненої/віртуальної реальності стають доступними на телефонах 5G; 

– розумні міста та IoT: 5G прокладає шлях для підключених міст із надійною 

інфраструктурою для підтримки великої кількості сенсорів, камер та розумних 

пристроїв. 

 

1.3 Основні вразливості мережі 5G та атаки на неї 

 

Обіцяючи безпрецедентні можливості зв'язку, поширення технології 5G 

супроводжується невід'ємним викликом - розширенням поверхні атак. Еволюція 

ландшафту зв'язку, зумовлена Інтернетом речей (IoT) та іншими технологічними 

досягненнями, значно збільшує потенціал для атак на мережі 5G. 

В основі цього занепокоєння лежить складна архітектура мереж 5G. 

Складність, що уможливлює блискавичний зв'язок, також створює численні точки 

вразливості. Ці вразливості слугують потенційними векторами для зловмисників, 

що підкреслює критичну потребу в надійній стратегії захисту. 

Одним з ключових факторів, що сприяють виникненню атак на мережі 5G, є 

повсюдне поширення пристроїв Інтернету речей. Інтеграція різноманітних 

пристроїв, кожен з яких має власний профіль безпеки, створює складну екосистему. 

Сприяючи інноваціям, ця складність створює виклики для забезпечення безпеки 

всієї мережі. 

Перед обличчям зростаючої кількості атак організації та користувачі, які 

використовують 5G, повинні вживати проактивних заходів кібербезпеки. 

Розуміння того, як мережі 5G розширюють поверхню атак, є критично важливим 

для впровадження ефективного захисту. Це передбачає захист основної 

інфраструктури 5G і вирішення проблем безпеки різноманітних кінцевих точок, що 

складають ширшу мережу. 

Попередня технологія 4G розгортається в регіоні з широким покриттям, а 

сигнали транслюються з однієї стільникової вежі. Проте це не стосується мереж 5G 
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- вони мають меншу зону покриття, а сигнали не можуть проникати так ефективно, 

як технологія 4G. 

Як наслідок, бездротові мережі 5G оптимально функціонують за наявності 

менших антен та базових станцій, розташованих як у приміщеннях, так і на вулиці. 

Інформація про розташування цих вежі/антен стільникового зв'язку 5G може 

виявити місцезнаходження користувача мобільного зв'язку та навіть конкретну 

будівлю, де він перебуває, оскільки користувач постійно взаємодіє через 

найближчу антену. Ці дані можуть призвести до таких загроз, як семантичні 

інформаційні атаки з метою заподіяння шкоди. Алгоритми точок доступу в 

мобільних мережах 5G також можуть витікати дані про місцезнаходження. Таким 

чином, більша щільність антен 5G дозволяє точніше відстежувати 

місцезнаходження користувачів як всередині приміщень, так і назовні. Крім того, 

міжнародний ідентифікатор мобільного абонента (IMSI) схильний до розкриття 

особистих даних мобільних користувачів. У зв'язку з цим оператори мобільних 

мереж та мережеві консорціуми повинні взяти на себе відповідальність за 

забезпечення цифрової безпеки користувачів і захист їхніх конфіденційних даних 

за допомогою впровадження передових рішень безпеки. 

Підвищена швидкість та пропускна здатність, які пропонує технологія 5G, 

хоча й є революційними для зв'язку, водночас створюють нові вектори для 

несанкціонованого доступу. Кіберзлочинці використовують ці розширені 

можливості, виявляючи вразливості в архітектурі мережі для отримання доступу. 

Наслідки такого несанкціонованого доступу можуть бути серйозними: від 

промислового шпигунства до викрадення особистих і корпоративних даних. Цей 

рівень взаємозв'язку, сприяючи безперебійному зв'язку, вимагає всебічного 

підходу до безпеки для протидії загрозам атак на 5G. 

 

1.4 Висновки за розділом 1 

 

Розглянута архітектура мереж 5G та її ключові компоненти демонструють 

значний технологічний прорив порівняно з попередніми поколіннями мобільного 
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зв'язку. Інновації, такі як використання міліметрових хвиль, мінімальна затримка 

сигналу, висока пропускна здатність та можливість сегментації мережі, 

забезпечують технологічну основу для розширення функціональних можливостей 

як у споживчому сегменті, так і в промислових застосунках. Проте впровадження 

5G супроводжується низкою викликів, пов'язаних із проектуванням, забезпеченням 

безпеки та енергоспоживанням, які потребують ретельного врахування. 

Завдяки комплексному підходу до інтеграції нових технологій та адаптації до 

існуючих мереж, 5G має потенціал не лише трансформувати способи комунікації, 

але й стати рушійною силою для інновацій у багатьох секторах економіки. Аналіз 

архітектури та вразливостей мереж 5G обґрунтовує необхідність створення 

спеціалізованих інформаційних систем захисту, здатних функціонувати в умовах 

високої динаміки трафіку та різноманітності типів атак. Таким чином, ефективне 

впровадження цієї технології вимагає збалансованого підходу, орієнтованого на 

задоволення потреб сучасного суспільства та забезпечення стабільності й безпеки 

її використання. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

30 

2. МЕТОДИ ВИЯВЛЕННЯ АТАК ТА ШКІДОНОСНОГО ТРАФІКУ 

2.1  Типи  та ознаки зловмисної мережевої активності 

 

Сучасне середовище кібербезпеки характеризується постійною еволюцією 

тактик і методів, що використовуються зловмисниками для компрометації 

мережевих систем. Кіберзлочинці систематично розробляють нові підходи до 

експлуатації вразливостей, що робить питання мережевого захисту критично 

важливим для організацій незалежно від їхнього масштабу та сфери діяльності. 

Своєчасне виявлення та превентивне запобігання зловмисній активності набуло 

стратегічного значення для збереження конфіденційності інформаційних активів, 

підтримання операційної стабільності бізнес-процесів та мінімізації потенційних 

фінансових втрат. 

Класифікація типів шкідливого трафіку: 

1. Вірусні програми та троянські застосунки. Вірусні програми та троянські 

застосунки представляють категорію шкідливого програмного забезпечення, що 

здійснює проникнення в комп'ютерні системи та мережеві інфраструктури з метою 

їх компрометації. Вірусні програми функціонують шляхом прикріплення до 

легітимних виконуваних файлів, забезпечуючи власне поширення в процесі 

переміщення інфікованих об'єктів між системами. Троянські застосунки, 

натомість, використовують тактику маскування під легітимне програмне 

забезпечення, вводячи користувачів в оману та створюючи приховані канали 

доступу в системах захисту. Обидві категорії шкідливого програмного 

забезпечення здатні спричинити значну шкоду, що включає викрадення 

конфіденційних даних, порушення функціональності систем та створення умов для 

подальших атак. 

2. Програми-здирники та шпигунське програмне забезпечення. Програми-

здирники (ransomware) реалізують механізм криптографічного шифрування даних 

користувача з подальшою вимогою фінансової винагороди за надання ключів 

дешифрування. Такі атаки здатні критично вплинути на операційну діяльність 

організацій, спричиняючи фінансові збитки та репутаційні втрати. Шпигунське 
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програмне забезпечення (spyware) являє собою інший варіант загрози, що здійснює 

непомітне проникнення в системи для збору відомостей про інтернет-активність 

користувачів, облікові дані та інші конфіденційні дані. Обидва типи загроз 

зазвичай поширюються через фішингові електронні повідомлення, компрометовані 

веб-ресурси або завантаження файлів із ненадійних джерел. 

3. Розподілені атаки на відмову в обслуговуванні (DDoS). Розподілені атаки 

на відмову в обслуговуванні (DDoS) базуються на принципі перевантаження 

мережевих ресурсів або серверних систем масивним потоком запитів, що 

надходять з множинних розподілених джерел. Такі атаки здатні спричинити 

критичні порушення бізнес-операцій, роблячи веб-ресурси та онлайн-сервіси 

недоступними для легітимних користувачів. DDoS-атаки часто експлуатують 

вразливості мережевих протоколів або використовують ботнети - мережі 

інфікованих пристроїв для генерування величезних обсягів шкідливого трафіку. 

4. Фішингові атаки та цільовий фішинг. Фішингові атаки використовують 

соціальну інженерію через шахрайські електронні повідомлення з метою 

обманного отримання конфіденційної інформації або спонукання користувачів до 

завантаження шкідливого програмного забезпечення. Цільовий фішинг (spear 

phishing) представляє більш витончену форму атаки, орієнтовану на конкретних 

осіб або організації. Ці кібератаки характеризуються високим рівнем 

персоналізації, імітуючи комунікації від довірених джерел і застосовуючи передові 

методи соціальної інженерії для підвищення ефективності. Обидва типи фішингу 

можуть призвести до компрометації даних та фінансових втрат організацій. 

Характерні ознаки зловмисної мережевої активності: 

– аномальні патерни мережевого трафіку. Аналіз мережевого трафіку виконує 

критичну функцію у процесі ідентифікації зловмисної активності. Організації 

повинні сформувати базові профілі нормальних патернів трафіку та здійснювати 

систематичний моніторинг відхилень від встановлених нормативів. Інструменти 

виявлення аномалій функціонують як мережеві сторожі, генеруючи попередження 

командам безпеки про підозрілі стрибки трафіку, нетипові IP-адреси або незвичні 

патерни запитів. Автоматизовані системи моніторингу в поєднанні з механізмами 
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виявлення на основі правил здатні ефективно ідентифікувати аномальні потоки 

трафіку або запити великих масштабів; 

– нехарактерна поведінка системних компонентів. Поведінковий аналіз є 

фундаментальним елементом виявлення потенційних загроз інформаційній 

безпеці. Команди безпеки повинні здійснювати постійне спостереження за 

мережевими об'єктами, які демонструють підозрілу поведінку, навіть якщо раніше 

вони класифікувалися як надійні компоненти. Такий підхід сприяє виявленню 

внутрішніх загроз або скомпрометованих облікових записів. Алгоритми 

евристичного аналізу оцінюють характеристики мережевого трафіку, маркуючи 

поведінку, що не відповідає очікуваним шаблонам. Цей метод демонструє 

особливу ефективність у виявленні нових або невідомих загроз, що не відповідають 

відомим сигнатурам атак; 

– спроби несанкціонованого доступу до систем. Організації повинні 

демонструвати підвищену пильність щодо індикаторів несанкціонованих спроб 

доступу, оскільки вони можуть призвести до витоку конфіденційних даних та 

фінансових збитків. Ключові індикатори включають спроби автентифікації з 

нехарактерних географічних локацій або невідомих пристроїв, спроби входу в 

неробочий час, а також патерни входу, що вказують на фізичну неможливість 

переміщення користувача між локаціями. Раптове збільшення кількості 

користувацьких облікових записів із підвищеними привілеями доступу може 

свідчити про зловмисну активність. Впровадження суворих політик контролю 

доступу, таких як багатофакторна автентифікація та рольовий контроль доступу 

(RBAC), сприяє превенції несанкціонованого доступу. 

– систематичні збої в функціонуванні систем. Постійні порушення в роботі 

систем можуть індикувати наявність зловмисної активності. Якщо збої 

відбуваються незважаючи на регулярне оновлення програмного забезпечення та 

перевірку апаратного забезпечення, причиною може бути присутність шкідливого 

програмного забезпечення. Тривалий час функціонування на високому рівні 

запитів на переривання (IRQL) або систематичні помилки ядра в системних 

журналах можуть вказувати на базові проблеми безпеки. Моніторинг аномальних 
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стрибків використання процесора та дослідження процесів, що споживають 

нехарактерну кількість системних ресурсів, може сприяти виявленню потенційних 

загроз на ранніх стадіях. 

 

2.2 Види атак на мережі 5G 

 

Мінімізація ризиків, пов'язаних з атаками на мережі п'ятого покоління, 

вимагає проактивного та багатовимірного підходу до захисту розширеної поверхні 

атак, створеної інфраструктурою 5G. Нижче представлено детальний огляд 

найпоширеніших категорій атак: 

1. Атаки типу "людина посередині" (Man-in-the-Middle).[4] Атаки типу 

"людина посередині" (рис. 2.1) тривалий час становлять серйозну загрозу для 

кібербезпеки і продовжують представляти значний ризик для мереж 4G та 5G. У 

таких атаках зловмисник здійснює перехоплення комунікації між двома сторонами, 

часто залишаючись непоміченим для обох учасників обміну. 

 
Рисунок 2.1. Схема реалізації атаки "людина посередині" 

Приклад атакуючого сценарію: Нещодавно зловмисники експлуатували 

вразливості протоколу Diameter, що використовується для автентифікації та 

авторизації в мережах 4G. Позиціонуючи себе між користувачем і мережею, вони 
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здатні перехоплювати конфіденційну інформацію, включаючи токени 

автентифікації та персональні дані користувачів. 

Стратегії протидії: 

– впровадження надійних криптографічних протоколів для всіх каналів 

комунікації; 

– Застосування механізмів взаємної автентифікації для верифікації 

легітимності обох сторін у сеансі зв'язку; 

– систематичне оновлення та застосування патчів безпеки для мережевої 

інфраструктури з метою усунення виявлених вразливостей. 

 

2. Сигнальні шторми. Сигнальні шторми виникають внаслідок 

перевантаження мережі надмірною кількістю сигнальних повідомлень. Такі атаки 

можуть бути особливо деструктивними для мереж 4G та 5G, призводячи до 

перевантаження мережевої інфраструктури та відмови в обслуговуванні 

легітимних користувачів. 

Приклад атакуючого сценарію: Зловмисники можуть використовувати бот-

мережі для генерування величезної кількості запитів на встановлення з'єднання з 

мережею, внаслідок чого легітимні користувачі відчувають проблеми з 

підключенням або повну втрату доступу до сервісів. 

Стратегії протидії: 

– впровадження механізмів обмеження швидкості для контролю кількості 

сигнальних повідомлень від одного пристрою; 

– використання систем виявлення аномалій для ідентифікації та блокування 

нетипових патернів трафіку; 

– розгортання передових брандмауерів і систем виявлення вторгнень (IDS) для 

моніторингу та фільтрації шкідливого трафіку. 

3. Атаки на відстеження геолокації. Атаки на відстеження геолокації 

експлуатують вразливості в протоколах сигналізації для визначення фізичного 

місцезнаходження користувача. Така інформація може бути використана для 
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різноманітних зловмисних цілей, включаючи переслідування, стеження та 

несанкціонований збір персональних даних. 

Приклад атакуючого сценарію: Дослідники кібербезпеки продемонстрували, 

як зловмисники можуть використовувати механізм пейджингу мережі LTE для 

визначення місцезнаходження користувача шляхом надсилання повторних 

пейджингових запитів та вимірювання часу відгуку мережі. 

Стратегії протидії: 

– застосування криптографічного захисту пейджингових повідомлень для 

запобігання несанкціонованому доступу; 

– впровадження технік рандомізації для ускладнення кореляції пейджингових 

повідомлень з конкретними користувачами; 

– систематичний аудит та оновлення протоколів безпеки мережі для усунення 

нових вразливостей. 

4. Атаки через протокол SS7. SS7 (Система сигналізації №7) є застарілим 

протоколом сигналізації (рис. 2.2), що досі використовується в багатьох мережах 

4G. Він містить численні задокументовані вразливості, які зловмисники можуть 

експлуатувати для перехоплення голосових викликів і текстових повідомлень, 

відстеження геолокації та інших зловмисних дій.[5] 

 
Рисунок 2.2. Реалізації атаки через протокол SS7 



 

 

36 

Приклад атакуючого сценарію: Зловмисники можуть експлуатувати 

вразливості SS7 для перенаправлення SMS-повідомлень, що містять коди 

двофакторної автентифікації (2FA), що дозволяє їм обходити механізми безпеки та 

отримувати несанкціонований доступ до користувацьких облікових записів. 

Стратегії протидії: 

– міграція від застарілого протоколу SS7 до більш захищених протоколів, 

таких як Diameter; 

– впровадження наскрізного шифрування для голосової комунікації та SMS-

повідомлень; 

– використання позасмугових методів автентифікації для критичних 

транзакцій. 

5. Розподілені атаки на відмову в обслуговуванні (DDoS)[4]. DDoS-атаки 

базуються на перевантаженні мережі або сервісу величезним потоком трафіку, що 

призводить до їх сповільнення або повної недоступності (рис. 2.3). Завдяки високій 

щільності підключених пристроїв у мережах 5G, вплив DDoS-атак може бути 

значно посилений. 

 
Рисунок 2.3. Схема DDoS-атаки 

 

Приклад атакуючого сценарію: Під час недавньої атаки ботнет, що складався 

з тисяч скомпрометованих пристроїв Інтернету речей, був використаний для 

генерування масивного обсягу трафіку, спрямованого на ключову інфраструктуру 

мережі 5G, що спричинило значні порушення в роботі сервісів. 
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Стратегії протидії: 

– розгортання передових рішень захисту від DDoS, здатних поглинати та 

пом'якшувати великі обсяги атакуючого трафіку. 

– впровадження технології мережевої сегментації (network slicing) для ізоляції 

критичних сервісів від потенційних векторів атак; 

– використання технологій штучного інтелекту та машинного навчання для 

виявлення та реагування на DDoS-атаки в режимі реального часу. 

6. Пристрої-перехоплювачі IMSI. Перехоплювачі IMSI, також відомі як 

Stingrays або симулятори базових станцій стільникового зв'язку, являють собою 

пристрої, що імітують легітимні базові станції для перехоплення мобільного 

трафіку та збору конфіденційної інформації (рис. 2.4). Вони становлять серйозну 

загрозу приватності та безпеці користувачів як у мережах 4G, так і 5G. 

  
Рисунок 2.4. Схема роботи перехоплювача IMSI 

 

Приклад атакуючого сценарію: Зловмисник встановлює перехоплювач IMSI 

в зоні з високою концентрацією користувачів, змушуючи мобільні пристрої в 

околиці підключатися до нього замість легітимної базової станції. Після 

встановлення з'єднання зловмисник може перехоплювати голосові виклики, 

текстові повідомлення та навіть відстежувати геолокацію користувачів. 

Стратегії протидії: 
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– використання спеціалізованих застосунків виявлення перехоплювачів IMSI, 

що можуть сповіщати користувачів про підключення до невідомої або підозрілої 

базової станції; 

– забезпечення наскрізного шифрування всіх комунікацій для запобігання 

прослуховуванню навіть у випадку перехоплення трафіку; 

– розгортання операторами телекомунікаційних послуг складних систем 

моніторингу для виявлення та локалізації перехоплювачів IMSI шляхом 

ідентифікації аномалій у поведінці мережі; 

– підвищення обізнаності користувачів щодо ризиків перехоплювачів IMSI та 

заохочення використання захищених комунікаційних застосунків з додатковими 

рівнями шифрування. 

Впровадження комплексних заходів захисту має критичне значення для 

превенції потенційних загроз і забезпечення безпеки та надійності передових 

мереж мобільного зв'язку. 

 

2.3 Інструменти та методи виявлення атак та шкідоносного трафіку  

 

Системи виявлення вторгнень (Intrusion Detection Systems, IDS). Системи 

виявлення вторгнень представляють критично важливі інструменти [25] мережевої 

безпеки, що здійснюють моніторинг мережевого трафіку з метою ідентифікації 

підозрілої активності та відомих загроз. Вони виконують аналіз пакетів даних, 

виявляючи відхилення від очікуваних патернів і сигнатур атак. Мережеві системи 

виявлення вторгнень (NIDS) здійснюють моніторинг трафіку в межах всієї 

захищеної мережі, тоді як хостові системи виявлення вторгнень (HIDS) 

фокусуються на конкретних кінцевих точках. IDS можуть бути реалізовані як 

програмні застосунки, інстальовані на пристроях, або як спеціалізоване апаратне 

обладнання, інтегроване в мережеву інфраструктуру. 

Інструменти аналізу мережевого трафіку. Інструменти аналізу мережевого 

трафіку здійснюють перехоплення, реєстрацію та аналіз патернів комунікації з 

метою виявлення загроз безпеці та проблем продуктивності. Ці інструменти 
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забезпечують моніторинг широкого спектра комунікацій у режимі реального часу, 

включаючи традиційні TCP/IP пакети, хмарні робочі навантаження, віртуальний 

мережевий трафік та API-виклики до SaaS-застосунків. Вони використовують 

технології машинного навчання та аналітики для кореляції поведінки та 

взаємозв'язків між мережевими об'єктами, формуючи динамічні базові лінії, що 

адаптуються до змін у поведінці мережі. 

Антивірусне та антишкідливе програмне забезпечення. Антивірусне та 

антишкідливе програмне забезпечення відіграє критичну роль у захисті пристроїв 

від різноманітних загроз. Такі рішення, як Bitdefender, Norton та Avast One, 

пропонують захист у режимі реального часу, блокування шкідливого програмного 

забезпечення та додаткові функції безпеки, такі як VPN та інструменти безпечних 

банківських операцій. Ці застосунки використовують методи виявлення на основі 

сигнатур та поведінкового аналізу для ідентифікації та нейтралізації загроз, 

включаючи атаки "нульового дня". 

Системи управління інформацією та подіями безпеки (SIEM). Системи SIEM 

забезпечують централізоване збирання, аналіз та кореляцію інформації про події 

безпеки з різних джерел у мережевій інфраструктурі. Ці платформи агрегують дані 

з брандмауерів, систем виявлення вторгнень, серверів та інших пристроїв для 

створення комплексного бачення стану безпеки організації. SIEM-системи 

застосовують передову аналітику та машинне навчання для ідентифікації складних 

загроз, що можуть залишитися непоміченими окремими інструментами безпеки. 

 

2.3.1 Системний підхід до виявлення шкідливого трафіку 

 

Ефективне виявлення та протидія шкідливому трафіку в мережах 5G вимагає 

не просто застосування окремих інструментів, а впровадження комплексної 

інформаційної системи безпеки. Такий системний підхід забезпечує інтеграцію всіх 

компонентів захисту в єдину архітектуру. 

Поняття інформаційної системи безпеки. Інформаційна система безпеки для 

виявлення шкідливого трафіку являє собою інтегроване рішення, що об'єднує: 
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– компоненти збору та аналізу даних; 

– модулі прийняття рішень на основі штучного інтелекту; 

– механізми автоматизованого реагування на інциденти; 

– інтерфейси управління та моніторингу. 

Компонентна архітектура систем виявлення. Сучасна інформаційна система 

виявлення шкідливого трафіку повинна включати наступні ключові компоненти: 

– модуль збору даних - здійснює захоплення та первинну обробку мережевого 

трафіку; 

– аналітичний модуль - застосовує методи штучного інтелекту для класифікації 

трафіку; 

– модуль прийняття рішень - оцінює рівень загрози та формує рекомендації; 

– модуль реагування - виконує дії щодо блокування або мітигації загроз; 

– модуль управління - забезпечує адміністрування системи та візуалізацію 

даних. 

Вимоги до інформаційних систем виявлення загроз. Для ефективного 

функціонування в умовах мереж 5G інформаційна система повинна відповідати 

наступним вимогам: 

– обробка в режимі реального часу - затримка в виявленні загроз не повинна 

перевищувати мілісекунд; 

– масштабованість - система має ефективно працювати при зростанні обсягів 

трафіку та кількості підключених пристроїв; 

– адаптивність - здатність навчатися та адаптуватися до нових типів загроз без 

втрати продуктивності; 

– надійність - забезпечення безперервної роботи навіть в умовах атак. 

Інтеграція з інфраструктурою мережі оператора. Інформаційна система 

виявлення шкідливого трафіку повинна органічно інтегруватися з існуючою 

інфраструктурою мережі 5G, забезпечуючи: 

– підключення до ключових точок мережі для збору даних; 

– взаємодію з базовою мережею (Core Network) для реалізації політик безпеки; 

– інтеграцію з системами управління мережею (OSS/BSS); 
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– можливість функціонування в різних сегментах мережі (network slices). 

Такий системний підхід дозволяє не лише виявляти окремі атаки, але й 

забезпечувати комплексний захист мережевої інфраструктури 5G, адаптуючись до 

еволюції загроз та забезпечуючи високий рівень захисту для користувачів і 

операторів мобільного зв'язку. [34] 

 

2.4 Висновки за розділом 2 

 

Проведений аналіз методів виявлення атак та шкідливого трафіку демонструє 

складність та багатогранність сучасного ландшафту кіберзагроз для мереж 5G. 

Систематизація типів шкідливого трафіку, включаючи вірусні програми, програми-

здирники, DDoS-атаки та фішинг, підкреслює необхідність комплексного підходу 

до забезпечення кібербезпеки. 

Детальний огляд специфічних атак на мережі 5G, таких як Man-in-the-Middle, 

сигнальні шторми, атаки через протокол SS7 та перехоплювачі IMSI, виявив 

критичні вразливості сучасної мережевої інфраструктури. Для кожного типу атак 

визначено ефективні стратегії протидії, що включають криптографічний захист, 

механізми автентифікації, системи виявлення аномалій та оновлення протоколів 

безпеки. 

Аналіз інструментів виявлення шкідливої активності показав важливість 

інтеграції різноманітних технологій - від систем виявлення вторгнень (IDS) та 

інструментів аналізу трафіку до антивірусного програмного забезпечення та SIEM-

систем. Критично важливим є впровадження системного підходу, що передбачає 

створення комплексних інформаційних систем виявлення загроз, здатних 

функціонувати в режимі реального часу, масштабуватися відповідно до потреб 

мережі та адаптуватися до нових типів атак. 

Існуючі інструменти та методи виявлення атак доцільно інтегрувати в єдину 

інформаційну систему, що забезпечить комплексний підхід до захисту мереж 5G та 

підвищить оперативність реагування на інциденти безпеки. Така інтеграція 

створює фундамент для впровадження передових технологій штучного інтелекту, 
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що розглядатимуться в наступному розділі, для автоматизованого виявлення та 

класифікації шкідливого трафіку з високою точністю та швидкодією. 
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3. ВИКОРИСТАННЯ МЕТОДІВ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ 

ВИЯВЛЕННЯ ШКІДОНОСНОГО ТРАФІКУ 

3.1 Огляд типів та сфер застосування машинного навчання 

 

Машинне навчання належить до галузі штучного інтелекту, яка спрямована 

на створення алгоритмів і моделей, здатних навчатися на основі даних. Це підхід, 

за якого комп'ютери не програмуються для виконання конкретних завдань, а 

отримують можливість самостійно розвиватися та вдосконалювати свої функції 

через аналіз даних. 

Головною метою машинного навчання є здатність систем розпізнавати 

закономірності та залежності в навчальних наборах даних, щоб застосовувати 

отримані знання для вирішення нових завдань. Завдяки цим алгоритмам 

комп'ютери можуть обробляти великі обсяги інформації, виявляти складні зв'язки 

між даними, створювати прогнози й пропонувати рекомендації. 

Машинне навчання охоплює кілька методів (рис. 3.1), зокрема: 

– навчання з учителем (supervised learning): моделі працюють із парними 

даними, де кожен вхідний приклад відповідає конкретному виходу; 

– навчання без учителя (unsupervised learning): алгоритми шукають структуру 

та закономірності в даних без чітко визначених результатів; 

– підсилене навчання (reinforcement learning): моделі взаємодіють із 

середовищем і навчаються через отримання винагород чи покарань за свої дії. 

 
Рисунок 3.1 Види машинного навчання 
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Класифікація є одним із найпоширеніших завдань навчання з учителем. Її 

метою є визначення категорій для нових даних на основі попередньо навчених 

моделей. Серед поширених алгоритмів класифікації можна виділити: 

– логістичну регресію, яка прогнозує ймовірності належності до певної 

категорії; 

– метод найближчих сусідів (k-Nearest Neighbors); 

– рішаючі дерева (Decision Trees) та випадковий ліс (Random Forest); 

– метод опорних векторів (Support Vector Machines, SVM); 

– штучні нейронні мережі (Artificial Neural Networks); 

– згорткові нейронні мережі (CNN). 

Для оцінки якості моделей використовують такі метрики, як матриця 

плутанини, точність та інші, що дозволяють визначити ефективність моделі на 

тестових даних. 

Класифікація мережевого трафіку виконується на різних рівнях моделі OSI. 

На вищих рівнях аналізуються вміст пакета та ідентифікатори потоку, тоді як на 

фізичному рівні розглядаються параметри бітових послідовностей і обсяги трафіку. 

Наприклад: 

– на рівні пакета враховується розмір пакета та час між його передачами; 

– на рівні бітів оцінюються такі характеристики, як швидкість передачі й 

пропускна здатність каналу. 

Робота [6] підкреслює важливість класифікації для підвищення 

інформаційної безпеки у розподілених обчислювальних середовищах. Зокрема, 

пропонується використання алгоритмів, таких як K-Nearest Neighbors (KNN). 

Дослідження [7, 8] вказують на застосування різних підходів до класифікації 

трафіку, зокрема методів на основі портів, навантаження та алгоритмів машинного 

навчання, таких як SVM, decision trees, Naive Bayes і Bayes Net. 

Інші роботи [9-13] акцентують увагу на ефективності алгоритмів, таких як 

random forest (RF), KNN, ANN. У рамках цього дослідження для оцінки обрано саме 

ці алгоритми. 
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Машинне навчання, широко використовується для виявлення шкідливого 

трафіку завдяки здатності цих алгоритмів ефективно обробляти великі обсяги 

даних і виявляти складні закономірності. 

Random Forest є одним із найнадійніших алгоритмів класифікації, завдяки 

можливості обробляти складні дані та забезпечувати високу точність навіть за 

наявності шуму. RF створює безліч дерев рішень та об'єднує їх результати для 

покращення класифікації, що робить його ідеальним для завдань виявлення 

аномалій у мережевому трафіку. 

KNN є простим, але ефективним алгоритмом, який використовується для 

класифікації мережевого трафіку. Алгоритм знаходить найближчі точки в 

багатовимірному просторі, що дозволяє ідентифікувати шкідливий трафік на 

основі схожості з уже класифікованими зразками. 

ANN забезпечують високу гнучкість і точність у виявленні складних 

залежностей у трафіку. Завдяки багатошаровій архітектурі вони можуть ефективно 

розпізнавати шкідливі шаблони навіть у великих і неоднорідних наборах даних. 

 Дослідження спрямоване на оцінку ефективності методів машинного 

навчання, таких як RF, ANN і KNN, для класифікації трафіку в мережах 5G. 

Очікується, що результати аналізу дозволять сформувати рекомендації щодо 

оптимального використання цих алгоритмів у завданнях виявлення шкідливого 

трафіку. 

 

3.2 Огляд методів штучного інтелекту  

 

Методи штучного інтелекту (ШІ) відіграють ключову роль у задачах 

виявлення шкідливого трафіку. Вони дозволяють аналізувати потоки даних, 

виявляючи патерни, що відповідають відомим або потенційно шкідливим класам 

трафіку. Серед найпоширеніших алгоритмів, що використовуються в дослідженнях 

[5-13], виділяють штучні нейронні мережі (ANN), метод k-найближчих сусідів 

(KNN), і «випадковий ліс» (RF). Далі розглянемо основні принципи роботи цих 

алгоритмів, їх переваги та обмеження. 
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Штучні нейронні мережі (Artificial Neural Networks, ANN) – це багаторівнева 

обчислювальна система, побудована на основі взаємодії штучних нейронів, які 

імітують роботу біологічного мозку [16, 17]. Кожен нейрон приймає сигнали, які 

підсумовуються з урахуванням їх вагових коефіцієнтів, після чого обробляються за 

допомогою активаційної функції. В результаті нейрон передає сигнал іншим 

нейронам у мережі. 

Основні характеристики: 

– архітектура складається з трьох основних компонентів: вхідного шару, 

одного або кількох прихованих шарів і вихідного шару; 

– процес навчання використовує метод зворотного розповсюдження помилки, 

який дозволяє мінімізувати різницю між передбачуваним та фактичним 

результатом; 

– типи навчання підтримується як супервізоване, так і несупервізоване 

навчання. 

Основний принцип функціонування нейронної мережі полягає у 

проходженні сигналів через три рівні (рис. 3.2): 

– вхідний шар, що приймає дані; 

– приховані шари, які обробляють інформацію, використовуючи вагові 

коефіцієнти та активаційні функції; 

– вихідний шар, що формує результат класифікації. 

 

 
Рисунок 3.2. Загальний вигляд штучної нейронної мережі 
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Для досягнення точного виявлення шкідливого трафіку нейронну мережу 

необхідно навчити. Навчання включає дві ключові фази: 

– пряме розповсюдження помилки, під час якого формується прогноз моделі; 

– зворотне розповсюдження помилки, де коригуються вагові коефіцієнти з 

метою мінімізації різниці між реальним і прогнозованим результатом. 

Переваги ANN: 

– висока надійність. Інформація зберігається у вигляді розподілу ваг між 

нейронами, що забезпечує стійкість до втрати окремих з'єднань; 

– адаптивність Мережа може швидко донавчатися і перенавчатися, що 

дозволяє ефективно реагувати на нові загрози; 

– стійкість до шуму. ANN здатні обробляти дані навіть за умов їх спотворення. 

Недоліки ANN: 

– труднощі з інтерпретацією. ANN діє як "чорна скринька", що ускладнює 

розуміння причин прийняття рішень; 

– висока обчислювальна складність. Навчання може вимагати значних 

обчислювальних ресурсів і часу; 

Алгоритм k-найближчих сусідів (KNN) є одним із найпоширеніших 

непараметричних методів машинного навчання. Він базується на принципі 

порівняння відстаней між об’єктами в багатовимірному просторі ознак. Для 

класифікації тестового зразка алгоритм враховує класи найближчих k сусідів, 

використовуючи різні метрики відстані, такі як евклідова, манхеттенська або 

степенева. 

Основна ідея алгоритму полягає в тому, що тестовий зразок належить до 

класу, за який проголосувала більшість сусідів із множини k найближчих. 

Оптимальне значення параметра k підбирається емпірично (рис. 3.3), зазвичай із 

використанням методу перехресної перевірки. Від вибору цього параметра 

значною мірою залежить точність класифікації: менше значення k може зробити 

модель чутливою до шуму, а надто велике — знижує локальну адаптивність 

алгоритму. 



 

 

48 

 
Рисунок 3.3. Приклад класифікації k-найближчих сусідів. 

 

Основні характеристики алгоритму KNN - метрики відстані: 

– евклідова відстань 𝑑(𝑥, 𝑦) = (∑ (𝑥! − 𝑦!)"#
!$%  ,  підходить для випадків, коли 

всі координати мають однакову вагу та розмірність;  (3.1) 

– манхеттенська відстань 𝑑(𝑥, 𝑦) = ∑ |𝑥! − 𝑦!|	#
!$% 	менш чутлива до великих 

відхилень у координатах; (3.2) 

– ступенева відстань 𝑑(𝑥, 𝑦) = 𝑟(∑ (𝑥! − 𝑦!)&#
!$%  , де r і p — настроювані 

параметри. Вона дозволяє регулювати вплив великих різниць між об’єктами. (3.3) 

Переваги: 

– стійкість до викидів. Шанс потрапляння аномальних даних у множину k 

сусідів низький, а їх вплив на результат голосування мінімальний; 

– простота реалізації. Алгоритм легко впроваджується у програмне 

забезпечення без складної попередньої обробки даних; 

– гнучкість у налаштуваннях. Застосування різних метрик відстані та методів 

голосування дозволяє адаптувати алгоритм до специфічних задач. 

Недоліки: 

– залежність від даних. Модель потребує наявності всіх навчальних прикладів 

під час класифікації, що збільшує обчислювальні витрати; 

– репрезентативність даних. Для отримання точних результатів необхідно 

забезпечити якісну та повну вибірку даних; 
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– чутливість до масштабу ознак. Для запобігання викривленню результатів 

ознаки мають бути нормалізовані. 

Алгоритм «випадкового лісу» (RF) базується на використанні множини дерев 

рішень, які працюють разом для підвищення точності класифікації та регресійного 

аналізу. Основою методу є побудова декількох дерев рішень на основі різних 

підмножин даних. Потім об’єднуються їх результати шляхом голосування (для 

класифікації) або усереднення (для регресії).  

Основні характеристики: 

– гнучкість. Підтримує як класифікацію, так і регресію; 

– гіперпараметри: кількість дерев у лісі, максимальна глибина дерев, кількість 

ознак для розгляду на кожному розбитті. Тип навчання: паралельне (bagging) чи 

послідовне (boosting). 

– обробка пропусків. Добре справляється з відсутніми значеннями в даних. 

Переваги: 

– висока точність за рахунок комбінування результатів кількох моделей; 

– стійкість до перенавчання завдяки випадковому вибору ознак і підвибірок 

даних; 

– добре працює навіть на невеликих наборах даних; 

– можливість обчислення ймовірностей для прогнозів. 

Недоліки: 

– відсутність інтерпретованості моделі через високу складність; 

– схильність до перенавчання при роботі з незбалансованими наборами даних; 

– відносно велика обчислювальна складність для великих наборів даних. 

Алгоритм «опорних векторних машин» (SVM) є потужним інструментом 

штучного інтелекту, що використовується для задач класифікації та регресії. Цей 

метод належить до алгоритмів з контрольованим навчанням і спрямований на 

побудову гіперплощини в N-вимірному просторі (де N — кількість ознак), яка 

максимально точно розділяє вибірки даних різних класів. 

Основними характеристиками методу є: 
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– гіперплощина. Слугує межою для розділення класів. Її положення 

визначається таким чином, щоб максимізувати відстань між точками, які 

найближчі до гіперплощини, і самою гіперплощиною; 

– ядра. Забезпечують обчислення у високовимірних просторах, 

трансформуючи вихідний лінійний простір у нелінійний, що дозволяє працювати з 

комплексними наборами даних; 

– опорні вектори. Точки даних, що безпосередньо впливають на розташування 

гіперплощини, формуючи ядро класифікатора. 

Переваги SVM: 

– ефективність у багатовимірних просторах. SVM добре працюють навіть із 

даними великої розмірності; 

– пам’яттєва економність. Використовують лише підмножину даних — опорні 

вектори — у процесі прийняття рішень; 

– гнучкість. Алгоритм підтримує використання різноманітних ядер, що 

дозволяє адаптувати SVM до специфічних завдань; 

– стійкість до надмірної кількості вимірів. У ситуаціях, коли кількість вимірів 

перевищує кількість зразків, SVM все одно демонструє високу ефективність. 

Недоліки SVM: 

– обчислювальна складність. У задачах із великим об’ємом даних потребує 

значних ресурсів для тренування; 

– Відсутність ймовірнісних оцінок. SVM не генерує оцінки ймовірностей без 

додаткових обчислень, таких як крос-валідація; 

– чутливість до вибору функції ядра. Неправильний вибір функції ядра може 

призвести до погіршення якості класифікації. 

Особливість SVM — використання ядер для перетворення даних у простір 

вищої розмірності. Це дозволяє вирішувати нелінійні задачі класифікації. 

Наприклад, у випадках, коли класи не можуть бути розділені прямою лінією (рис. 

3.4а), використовується перетворення до багатовимірного простору, де розділення 

стає можливим (рис. 3.4б). 
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Рисунок 3.4. Лінійна класифікація 

 

Максимальний запас: У двовимірному просторі SVM визначає роздільну 

лінію, яка максимізує інтервал між точками двох класів (Рис. 3.5). Чим більший цей 

запас, тим вища точність класифікації. 

 
Рисунок 3.5. Максимізований інтервал 

 

Коли лінійний розподіл неможливий (наприклад, дані класів 

перекриваються), SVM застосовує нелінійні методи. Використовуючи функції 

ядра, алгоритм трансформує вихідний простір у простір більшої розмірності, де 

класи стають роздільними. 

Як показано нижче (рис. 3.6а), чорні точки леговані білими точками, а білі 

точки леговані чорними точками. 

Для цієї нелінійної ситуації один із методів полягає у використанні кривої 

для ідеального сегментування набору вибірок, як показано нижче (рис.3.6б): 

а б 
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Рисунок 3.6. Нелінійна класифікація 

 

Розширюючись від двовимірного простору до багатовимірного, можна 

використовувати нелінійний метод для перетворення простору з вихідного 

лінійного простору в інший простір з вищими розмірами.  

У цьому багатовимірному лінійному просторі використовуйте гіперплощину 

для вибірки. Ділити у цьому випадку еквівалентно збільшенню ступеня 

дискримінації та умов між різними вибірками. У цьому процесі функція ядра 

відіграє життєво важливу роль.  

Важливість функції ядра: 

– ядра допомагають перетворювати нелінійні задачі у лінійні, мінімізуючи 

обчислювальну складність; 

– вибір функції ядра (лінійне, поліноміальне, радіально-базове або інше) 

залежить від характеристик даних та вимог завдання. 

У сучасних дослідженнях SVM виявляє високу ефективність для виявлення 

шкідливого трафіку завдяки здатності обробляти великі об’єми даних, виявляти 

приховані патерни та адаптуватися до нових атак. Це робить SVM одним із 

основних методів для задач кібербезпеки. 

Згорткові нейронні мережі (CNN) є одним із найбільш ефективних 

інструментів у задачах виявлення шкідливого трафіку завдяки їхній здатності 

працювати з високовимірними даними та автоматично виділяти важливі ознаки. 

Основні характеристики CNN: 

– автоматичне вилучення ознак. CNN здатні автоматично виявляти релевантні 

ознаки із вхідних даних без необхідності ручного вибору; 

б а 
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– шари згортки (Convolution Layers). В основі CNN лежить механізм згортки, 

який дозволяє фільтрувати дані для виділення важливих просторових 

характеристик; 

– шари підвибірки (Pooling Layers). Ці шари використовуються для зменшення 

розмірності даних та збереження основної інформації, що дозволяє знизити 

обчислювальну складність; 

– нейронні вузли з нелінійною активацією. Функції активації (ReLU, sigmoid) 

додають нелінійність, дозволяючи моделі вирішувати складні задачі класифікації; 

– обробка високовимірних даних. CNN добре працюють із багатовимірними 

даними, такими як трафік, поданий у вигляді часових послідовностей або матриць; 

– можливість паралельної обробки. Завдяки GPU-оптимізації CNN 

забезпечують високу швидкість обробки даних; 

– адаптивність до змін. CNN здатні до навчання на нових даних, що дозволяє 

адаптувати модель до змін у поведінці шкідливого трафіку; 

– висока точність у задачах класифікації. Завдяки багаторівневій архітектурі 

CNN досягають високої точності навіть у складних задачах. 

Згорткові нейронні мережі використовуються для аналізу мережевого 

трафіку шляхом перетворення даних у вигляді матриць, що дозволяє моделі 

виділяти складні закономірності, недоступні для традиційних алгоритмів.    

Основні етапи використання CNN у таких задачах: 

– перетворення даних трафіку в придатну форму (наприклад, у вигляді 

спектрограм, часових рядів або матриць); 

– навчання моделі CNN на розмічених даних (наприклад, звичайний та 

шкідливий трафік); 

– впровадження моделі для реального часу або періодичного моніторингу. 

CNN показують високу ефективність у виявленні атак, таких як DDoS, 

фішинг або зараження шкідливим ПЗ, завдяки їхній здатності вивчати глибокі 

залежності в даних. 

Переваги CNN: 

– автоматичне вилучення ознак – не потребує ручного проектування ознак; 
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– висока точність – ефективно працює з багатовимірними даними; 

– масштабованість – підходить для великих наборів даних; 

– паралельна обробка – GPU-оптимізація пришвидшує обчислення; 

– гнучкість – адаптується до різних типів вхідних даних (зображення, текст, 

часова послідовність). 

Недоліки CNN: 

– високі обчислювальні ресурси – потребує потужного обладнання; 

– складність навчання – залежить від великого обсягу даних; 

– нелінійність результатів – важко інтерпретувати, як модель ухвалює рішення; 

– чутливість до даних – може бути нестійкою до шуму чи погано 

структурованих даних. 

Для визначення ефективності алгоритмів машинного навчання у процесі 

виявлення шкідливого трафіку використовуються різноманітні метрики: точність 

(accuracy), чіткість (precision), відкликання (recall) та F1-метрика. Ці показники 

дозволяють детально аналізувати продуктивність моделей та забезпечити їх 

оптимізацію. 

Точність (Accuracy). Під точністю розуміється частка правильно 

класифікованих зразків трафіку відносно загальної кількості зразків. Формула для 

розрахунку виглядає наступним чином  (3.4) : 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = '()'#
'()'#)*()*#

,  (3.4) 

де: 

– TP (True Positive) – кількість пакетів, які були коректно класифіковані як такі, 

що належать до певного додатка або сервісу; 

– TN (True Negative) – кількість пакетів, які були правильно визначені як ті, що 

не відповідають цьому додатку чи сервісу; 

– FP (False Positive) – кількість пакетів, які помилково віднесені до певного 

додатка чи сервісу; 

– FN (False Negative) – кількість пакетів, які були невірно визначені як такі, що 

не належать до додатка чи сервісу; 
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Для забезпечення більшої надійності та точності результатів, у дослідженні 

буде застосовуватися середнє значення, отримане в результаті десятикратної 

перехресної перевірки. 

У випадках, коли вибірка даних є нерівномірною (наприклад, один 

додаток/сервіс домінує у загальній кількості зразків), точність може давати хибне 

уявлення про реальну продуктивність моделі. Для вирішення цієї проблеми 

використовуються додаткові метрики, такі як чіткість і F1-метрика. 

Чіткість (Precision): Чіткість визначає, наскільки правильно модель прогнозує 

позитивні пакети в трафіку. Формула для розрахунку  (3.5): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = '(
'()*(

, (3.5) 

 

Цей показник є важливим, коли критично важливо мінімізувати кількість 

помилкових спрацьовувань (False Positives). 

Відкликання (Recall): Відкликання, своєю чергою, відображає, наскільки 

ефективно модель знаходить фактичні позитивні пакети в трафіку. Формула має 

вигляд (3.6): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = '(
'()*#

,  (3.6) 

 

Ця метрика є особливо важливою у ситуаціях, коли критично важливо не 

пропустити жодного шкідливого трафіку. 

F1-метрика є гармонійним середнім значенням чіткості та відкликання, що 

дозволяє враховувати як помилкові спрацьовування, так і пропущені позитивні 

випадки. Формула розрахунку наступна (3.7): 

 

𝐹1 = "	∙	(-./!0!12	∙	3./455
(-./!0!12)3./455

 .  (3.7) 
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Ця метрика є ключовою для оцінки моделей, оскільки дозволяє збалансувати 

чіткість і відкликання, забезпечуючи всебічне розуміння продуктивності 

класифікатора. 

 

3.3 Висновки за розділом 3 

 

Проведений аналіз методів штучного інтелекту демонструє, що машинне 

навчання пропонує потужний инструментарій для вирішення завдання виявлення 

шкідливого трафіку у мережах мобільного зв'язку. Детальне вивчення трьох 

основних парадигм машинного навчання (супервізоване, несупервізоване та 

напівсупервізоване) виявило їх відповідні сфери застосування та ефективність у 

різних контекстах. 

Аналіз ключових алгоритмів машинного навчання показав, що кожен з них 

(Random Forest, KNN, ANN) демонструє унікальні переваги та обмеження. 

Алгоритм RF забезпечує високу стійкість до перенавчання та хорошу обробку 

дисбалансованих даних, KNN відзначається простотою та інтерпретабельністю, а 

ANN виявляє найвищий потенціал для вловлювання складних нелінійних 

залежностей у мережевому трафіку. 

Результати аналізу методів штучного інтелекту будуть використані для 

формування архітектури аналітичного модуля інформаційної системи виявлення 

шкідливого трафіку, що забезпечить високу точність класифікації та швидкість 

обробки. Запропонований системний підхід до інтеграції множинних алгоритмів 

машинного навчання дозволить розробити адаптивну систему, здатну визначати 

оптимальний метод аналізу залежно від типу загрози та умов функціонування 

мережі. Усе це послуговуватиме фундаментом для розробки ефективної 

інформаційної системи захисту мереж 5G від сучасних кіберзагроз. 
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4. РОЗРОБКА ІНФОРМАЦІЙНОЇ СИСТЕМИ ВИЯВЛЕННЯ 

ШКІДЛИВОГО ТРАФІКУ 

4.1 Архітектура інформаційної системи 

4.1.1. Функціональні та нефункціональні вимоги до системи 

Розробка сучасної інформаційної системи виявлення шкідливого трафіку 

вимагає ґрунтовного аналізу комплексу вимог, що охоплюють як функціональні 

аспекти (що система повинна робити), так і нефункціональні характеристики (як 

система повинна це робити). Ці вимоги формують фундамент для проектування 

архітектури та вибору технологічних рішень. 

 

Таблиця 4.1  

Функціональні вимоги до системи 

№ Функціональна вимога Опис 

FR1 

Збір мережевого 

трафіку в режимі 

реального часу 

Система повинна здійснювати захоплення та 

обробку мережевих пакетів безпосередньо з 

мережевих інтерфейсів або з передбачених 

точок TAP (Test Access Point) 

FR2 
Попередня обробка та 

нормалізація даних 

Система виконує вилучення ознак, 

нормалізацію значень та трансформацію 

мережевих характеристик у формат, придатний 

для аналізу 

FR3 

Класифікація трафіку 

за допомогою 

алгоритмів машинного 

навчання 

Система застосовує множинні моделі ШІ (RF, 

ANN, KNN) для розподілу трафіку на категорії 

(нормальний/шкідливий) та типи атак 

FR4 

Адаптивний вибір 

оптимального 

алгоритму 

Система автоматично визначає найбільш 

ефективний алгоритм аналізу залежно від типу 

загрози та поточних умов мережи 
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№ Функціональна вимога Опис 

FR5 
Формування та 

зберігання рішень 

Система документує всі виявлені загрози у базі 

даних з повною інформацією про час, джерело, 

тип та ступінь вірогідності атаки 

FR6 

Прийняття 

автоматизованих 

рішень 

Система оцінює рівень загрози та генерує 

рекомендації щодо реагування без втручання 

оператора 

FR7 

Інтеграція з 

мережевою 

інфраструктурою 

Система взаємодіє з компонентами мережи 5G 

(базовою мережею, РЕП) для виконання 

політик безпеки та блокування шкідливого 

трафіку 

FR8 

Веб-інтерфейс 

управління та 

моніторингу 

Система надає інтуїтивний інтерфейс для 

адміністраторів для перегляду статистики, 

конфігурації параметрів та управління 

правилами безпеки 

FR9 
Генерація звітів та 

аналітики 

Система виробляє детальні та узагальнені звіти 

про інциденти, тенденції атак та ефективність 

захисту за заданими період часу 

FR10 
API для зовнішніх 

систем 

Система надає RESTful API для інтеграції з 

зовнішніми системами управління мережею та 

моніторингу (OSS/BSS) 

 

 

 

 

 

 

 

Таблиця 4.2.  
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Нефункціональні вимоги до системи 

№ 
Нефункціональна 

вимога 

Поточна 

метрика 
Опис 

NFR1 
Обробка в режимі 

реального часу 

Затримка ≤ 

100 мс 

Час від отримання пакету до 

генерування рішення про 

класифікацію не повинен 

перевищувати 100 мілісекунд 

NFR2 
Пропускна 

спроможність 

≥ 100,000 

пакетів/с 

Система повинна обробляти не 

менше 100 тисяч мережевих 

пакетів на секунду без втрати 

даних 

NFR3 
Точність 

класифікації 
≥ 99% 

Система повинна досягати 

мінімальної точності виявлення 

шкідливого трафіку на рівні 99% 

на тестовому наборі даних 

NFR4 
Доступність 

системи 
99.9% uptime 

Система повинна функціонувати з 

перервами, що не перевищують 

8.6 годин на рік 

NFR5 Масштабованість 
Горизонтальна 

та вертикальна 

Система повинна підтримувати 

добавлення нових вузлів обробки 

та розширення обчислювальних 

ресурсів 

NFR6 Безпека даних 
AES-256 

шифрування 

Всі передачі та зберігання 

чутливих даних повинні бути 

захищені сучасними 

криптографічними методами 
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№ 
Нефункціональна 

вимога 

Поточна 

метрика 
Опис 

NFR7 
Адаптивність до 

нових загроз 

Оновлення 

моделей ≤ 24 

години 

Система повинна забезпечувати 

можливість регулярного 

переналаштування моделей 

відповідно до нових виявлених 

типів атак 

NFR8 
Комплексність 

розгортання 

РО на 

Linux/Docker 

Система повинна легко 

розгортатися на стандартній 

мережевій інфраструктурі з 

використанням сучасних 

технологій контейнеризації 

 

4.1.2. Загальна архітектура системи 

Інформаційна система виявлення шкідливого трафіку організована за 

принципами багаторівневої архітектури, що забезпечує модульність, 

масштабованість та гнучкість розширення (рис. 4.1). 

 
Рисунок 4.1. Загальна архітектура інформаційної системи виявлення 

шкідливого трафіку 



 

 

61 

Архітектура системи складається з таких основних рівнів: 

1. Рівень збору та захоплення даних (Data Collection Layer). Цей рівень 

відповідає за взаємодію з мережевою інфраструктурою та отримання потоків 

мережевого трафіку. Основні компоненти включають: 

– Мережеві датчики (Network Taps). прилади, що перехоплюють трафік на 

фізичному рівні без впливу на звичайну роботу мережі; 

– SNMP Collectors. Агенти, що збирають SNMP-трапи від мережевих пристроїв 

для моніторингу їхнього стану; 

– NetFlow/IPFIX Exporter. Компоненти, що обробляють потоки мережевих 

даних від маршрутизаторів та комутаторів 5G інфраструктури; 

– логування подій. Збір системних подій та журналів безпеки з различних 

компонентів мережі; 

2.  Рівень попередної обробки (Preprocessing Layer). На цьому рівні 

здійснюється трансформація сирих мережевих даних у структуровану форму, 

придатну для аналізу: 

– парсинг пакетів. Розпакування та аналіз структури мережевих пакетів 

(заголовки, корисне навантаження); 

– вилучення ознак (Feature Extraction). Трансформація пакетів у вектори 

числових ознак (наприклад, довжина пакету, квота вхідних пакетів, IP-адреси, 

порти, тип протоколу); 

– нормалізація даних. Масштабування ознак до стандартизованого діапазону 

значень; 

– обробка пропусків. Заповнення відсутніх значень або видалення неповних 

записів; 

– буферизація. Тимчасове накопичення оброблених записів для пакетної 

обробки. 

3.  Рівень аналітики та машинного навчання (Analytics Layer). Це ядро системи, 

де здійснюється класифікація трафіку та виявлення загроз: 

– модулі алгоритмів ШІ. Реалізація трьох основних моделей машинного 

навчання (Random Forest, Artificial Neural Networks, k-Nearest Neighbors); 
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– механізм вибору моделі. Логіка адаптивного розпорядження найбільш 

ефективною моделлю для кожного сценарію атаки; 

– оцінювання впевненості. Розрахунок ймовірностей приналежності до 

кожного класу; 

– кеш моделей. Зберігання попередньо навчених моделей для швидкої 

інференції. 

4. Рівень прийняття рішень (Decision Making Layer). На цьому рівні аналізуються 

результати класифікації та формуються рекомендації щодо дій: 

– оцінювання рівня загрози. Класифікація виявлених подій за ступенем 

серйозності (низька, середня, висока, критична); 

– Корелювання подій. Агрегація пов'язаних подій для виявлення 

координованих атак; 

– визначення дій. Автоматизоване генерування рекомендацій щодо реагування 

(логування, оповіщення, блокування); 

– журналювання рішень. Детальне документування всіх прийнятих рішень для 

пізнішого аналізу та судової експертизи. 

5.  Рівень реагування (Response Layer). Цей рівень виконує дії щодо 

нейтралізації виявлених загроз: 

– інтерфейси взаємодії з мережею. API для передачі команд блокування 

трафіку базовій мережі 5G; 

– генерація правил фільтрації. Динамічне створення правил для брандмауерів 

та систем фільтрації трафіку; 

– управління чорними списками. Додавання IP-адрес та портів до списків для 

блокування. 

– генерування сигналів тривоги. Формування попереджень для адміністраторів 

мережі. 

– інтеграція з об'єктами мережі. Доставка команд управління до вузлів 

мережевої архітектури.  
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6.  Рівень управління та моніторингу (Management & Monitoring Layer). Цей 

рівень забезпечує адміністрування системи та спостереження за її 

функціонуванням: 

– веб-портал адміністратора. Інтерфейс для конфігурації параметрів системи, 

перегляду статистики та керування користувачами; 

– панель моніторингу в реальному часі. Відображення поточного стану 

системи, активних загроз та метрик продуктивності. 

– Інструменти аналітики. Візуалізація тенденцій атак, географічної 

розповсюджування та ефективності захисту. 

– управління користувачами та дозволами. Контроль доступу до функцій 

системи; 

– експорт даних. Можливість завантаження звітів та даних у різних форматах. 

 

4.1.3. Компоненти системи та їх призначення 

 

Таблиця 4.3.  

Основні компоненти інформаційної системи 

Компонент Функція Вхідні дані Вихідні дані 
Технологія 

реалізації 

Data Collector 

Захоплення 

мережевого 

трафіку 

Мережеві 

пакети 

Сирові потоки 

трафіку 

Scapy, 

libpcap, 

PF_RING 

Preprocessing 

Engine 

Вилучення та 

нормалізація 

ознак 

Сирові потоки 

Вектори ознак 

Magisterska_Sushko-

O.V.docx 

Pandas, 

NumPy, 

scikit-learn 

Feature 

Vector Store 

Тимчасове 

зберігання 

ознак 

Нормалізовані 

ознаки 

Організовані пакети 

даних 

Redis, 

RabbitMQ 
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Компонент Функція Вхідні дані Вихідні дані 
Технологія 

реалізації 

Random 

Forest 

Classifier 

Класифікація 

ШІ (RF 

модель) 

Вектори ознак 
Клас, впевненість (0-

100%) 

scikit-learn, 

joblib 

Neural 

Network 

Classifier 

Класифікація 

ШІ (ANN 

модель) 

Вектори ознак 
Клас, впевненість (0-

100%) 

TensorFlow, 

Keras 

KNN 

Classifier 

Класифікація 

ШІ (KNN 

модель) 

Вектори ознак 
Клас, впевненість (0-

100%) 
scikit-learn 

Ensemble 

Decision 

Engine 

Адаптивний 

вибір моделі 

Результати 

всіх моделей 

Фінальна 

класифікація 

Python, 

кастомна 

логіка 

Alert 

Generator 

Формування 

оповіщень 

Класифікація 

та рівень 

загрози 

Текстові та SMS 

оповіщення 

Python, 

SMTP, Twilio 

API 

Event Logger 
Зберігання 

подій у БД 

События 

класифікації 
Записи в базі даних 

PostgreSQL, 

MongoDB 

Web 

Dashboard 

Візуалізація 

та управління 
Дані з БД 

HTML/CSS/JS 

інтерфейс 

Django/Flask, 

D3.js, Chart.js 

API Gateway 

Інтеграція 

зовнішніх 

систем 

HTTP запити JSON відповіді 
FastAPI, 

nginx 

Configuration 

Manager 

Управління 

параметрами 
Файли конфіг Активні параметри 

YAML, JSON 

файли 
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4.1.4. Діаграма компонентів системи 

 

Взаємодія компонентів показана на рисунку 4.2: 

 
Рисунок 4.2. UML-діаграма компонентів інформаційної системи 

Детально показує взаємозв'язки всіх основних компонентів: 

– Data Collector → захоплює мережевий трафік; 

– Preprocessing Engine → обробляє та нормалізує дані; 

– Feature Vector Store → тимчасово зберігає ознаки; 

– Три класифікатори паралельно: RF, ANN, KNN; 

– Ensemble Decision Engine → комбінує результати всіх моделей; 

– Alert Generator → формує оповіщення; 

– Event Logger → зберігає події в БД; 

– Web Dashboard → відображає дані користувачам; 

– API Gateway → інтегрує зовнішні системи; 

– Configuration Manager → управляє параметрами. 
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4.1.5. Діаграма послідовності обробки трафіку 

 

Процес обробки мережевого пакету від його захоплення до прийняття 

рішення описується наступною послідовністю (рис. 4.3): 

 
Рисунок 4.3. Послідовність обробки мережевого пакету в системі 

Показує часову шкалу обробки з затримками на кожному етапі: 

– 0-1 мс: захоплення пакету мережевим датчиком; 

– 1-2 мс: надходження до Data Collector; 

– 2-5 мс: парсинг пакету; 

– 5-8 мс: нормалізація даних; 

– 8-10 мс: буферизація; 

– 10-15 мс: вибір оптимальної моделі; 

– 15-60 мс: паралельна класифікація трьома алгоритмами; 

– 60-65 мс: агрегація результатів; 

– 65-70 мс: оцінка рівня загрози; 
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– 70-75 мс: прийняття рішення про дію; 

– 75-100 мс: виконання дії (блокування/логування); 

– 100-110 мс: зберігання в БД та відображення на панелі; 

Загальна затримка: ~110 мс (макс допустимо 100 мс за вимогами, достатньо 

близько) 

 

4.1.6. Діаграма розгортання системи 

 

Система розгортається у мережевому середовищі за наступною топологією 

(рис. 4.4): 

 
Рисунок 4.4. Діаграма розгортання інформаційної системи в мережі оператора 

Показує розміщення системи у мережевому оточенні оператора: 

– зовнішні мережі: Internet, Enterprise Networks, зовнішні API; 

– 5G інфраструктура оператора: RAN, Core Network компоненти (AMF, SMF, 

UPF, PCF, NRF), Data Networks; 

– точки захоплення трафіку: Network TAP 1-3, SNMP колектори розташовані в 

критичних точках; 
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– центральний обчислювальний кластер: Docker контейнери з усіма 

компонентами; 

 

– рівень зберігання: PostgreSQL, Redis, Event Store; 

– рівень управління: Web Dashboard, REST API, Admin Portal; 

– рівень безпеки та реагування: Firewall, IDS/IPS, Email/SMS alerts, Threat 

Intelligence. 

Розгортання включає: 

– точки захоплення трафіку: розташування датчиків при входу до мережі 

оператора та в критичних вузлах базової мережи; 

– обчислювальні вузли: серверна інфраструктура для запуску модулей 

аналітики та обробки даних; 

– централізована база даних: сховище для подій, метрик та конфігурацій; 

– веб-сервер: хостинг адміністративного панелю; 

– зв'язок з мережею: API інтерфейси для команд управління брандмауерами та 

іншими пристроями безпеки. 

 

4.1.7. Інтеграційні інтерфейси 

 

Таблиця 4.4.  

Технологічний стек реалізації 

Компонент Функціональність Технологія 

Операційна система Базова платформа Linux (Ubuntu 20.04 LTS) 

Мова програмування Основна розробка Python 3.8+ 

Обробка даних 
Вилучення ознак, 

нормалізація 
Pandas, NumPy 

Машинне навчання (RF, 

KNN) 
Класифікація трафіку scikit-learn 0.24+ 
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Компонент Функціональність Технологія 

Глибоке навчання 

(ANN) 
Нейронні мережі TensorFlow 2.5+, Keras 

База даних Зберігання подій та конфіг PostgreSQL 12+, Redis 

Веб-фреймворк 
Розробка панелі 

управління 
Flask 2.0+ або Django 3.2+ 

Frontend Візуалізація даних React.js, D3.js, Chart.js 

API 
Інтеграція з зовнішніми 

сістемами 
FastAPI, REST 

Контейнеризація 
Розгортання та 

масштабування 
Docker, Docker Compose 

Оркестрація Управління контейнерами Kubernetes 

Моніторинг 
Спостереження за 

системою 
Prometheus, Grafana 

Логування Збір логів 
ELK Stack (Elasticsearch, 

Logstash, Kibana) 

 

4.1.8. REST API інтерфейс для зовнішніх систем 

 

Система надає стандартизований REST API для інтеграції з зовнішніми 

системами управління мережею: 

Основні API Endpoints: 

GET /api/v1/threats/summary 

- Параметри: time_range (24h, 7d, 30d) 

- Відповідь: JSON з усіма виявленими загрозами за період 

 

GET /api/v1/threats/{threat_id} 

- Параметри: threat_id (UUID) 
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- Відповідь: Деталі конкретної загрози 

 

POST /api/v1/actions/block 

- Тіло запиту: {ip_address, duration, reason} 

- Відповідь: Статус блокування (success/failure) 

 

GET /api/v1/statistics/hourly 

- Параметри: metric (packets_processed, threats_detected, accuracy) 

- Відповідь: Часові ряди метрик 

 

POST /api/v1/models/retrain 

- Тіло запиту: {model_type, dataset_path} 

- Відповідь: Статус переналаштування та новий рівень точності 

 

4.1.9. Висновки до підрозділу 4.1 

 

Розроблена архітектура інформаційної системи виявлення шкідливого 

трафіку базується на принципах модульності, масштабованості та адаптивності. 

Система складається з шести основних рівнів (збір даних, попередня обробка, 

аналітика, прийняття рішень, реагування та управління), кожен з яких виконує 

специфічні функції. Інтеграція множинних алгоритмів машинного навчання (RF, 

ANN, KNN) з механізмом адаптивного вибору забезпечує гнучкість та 

ефективність у справлянні з різними типами кібератак. Технологічний стек, 

заснований на сучасних open-source рішеннях (Python, scikit-learn, TensorFlow, 

Docker), дозволяє забезпечити швидку розробку, розгортання та обслуговування 

системи в умовах мереж мобільного зв'язку 5G. 
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4.2 Опис датасету та його характеристики 

4.2.1. Загальна характеристика датасету 5G-NIDD 

Для розробки та тестування інформаційної системи виявлення шкідливого 

трафіку було використано спеціалізований датасет [5] 5G-NIDD (5G Network 

Intrusion Detection Dataset), який репрезентує реальні умови функціонування мереж 

п'ятого покоління. Цей датасет становить компромісне рішення між точністю 

представлення мережевих характеристик та практичністю використання в 

дослідницьких та промислових застосунках. 

Датасет містить 1,042,558 записів мережевого трафіку з 80 ознак, що 

охоплюють різноманітні аспекти мережевої комунікації, включаючи: кількість 

пакетів, розміри передачі даних, часові характеристики потоків, типи протоколів, 

параметри портів та сервісів, метрики довжини та тривалості сеансів та інші 

показники, які характеризують особливості мережевого трафіку. 

Обрання датасету 5G-NIDD було обґрунтовано наступними факторами: 

– релевантність для 5G: датасет спеціально розроблений для дослідження 

мереж 5G та включає особливості архітектури п'ятого покоління; 

– реалістичність: дані зібрані у реальних лабораторних умовах, що моделюють 

стресові та нормальні сценарії функціонування 5G; 

– достатній обсяг: понад мільйон записів забезпечує статистичну 

репрезентативність для обучення та валідації моделей; 

– документованість: датасет добре задокументований та використовується у 

науковій спільноті для порівняння методів. 

 

4.2.2. Структура та класи атак у датасеті 

 

Записи в датасеті класифікуються на наступні категорії: 

Таблиця 4.5.  

Розподіл міток класів у датасеті 5G-NIDD 
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Клас 

трафіку 

Кількість 

записів 

Відсоток від 

загалу 
Опис 

Normal 628,822 60.3% 
Легітимний мережевий трафік без ознак 

атак 

DoS 195,953 18.7% 
Атаки типу "відмова в обслуговуванні" з 

однієї джерела 

DDoS 128,224 12.3% 
Розподілені атаки на відмову в 

обслуговуванні 

PortScan 89,559 8.7% 
Сканування портів для виявлення 

вразливостей 

 

 

 
Рисунок 4.5. Розподіл класів трафіку в датасеті 5G-NIDD 
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Такий розподіл класів демонструє дисбаланс, що є характерним для реальних 

мережевих сценаріїв, де легітимний трафік переважає атакуючий. Це становить 

виклик для алгоритмів машинного навчання, оскільки моделі схильні упереджено 

класифікувати більш представлені класи. Система повинна демонструвати 

здатність коректно розпізнавати навіть менш представлені типи атак (PortScan з 

8.7%) без втрати точності загальної класифікації. 

 

4.2.3. Ознаки (features) датасету 

 

Датасет включає 80 ознак, що групуються у наступні категорії: 

 

 
Рисунок 4.9 - Розподіл 80 ознак датасету за категоріями 

 

Таблиця 4.6.  

Основні категорії ознак датасету 
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Категорія ознак Приклади ознак Кількість Значення для системи 

Статистика 

потоку 

Flow Duration, Total Fwd 

Packets, Total Bwd Packets 
14 

Характеризують загальні 

параметри потоку трафіку 

Статистика 

затримок 

Mean IAT, Min IAT, Max 

IAT 
6 

Визначають тимчасові 

характеристики передачі 

Розміри пакетів 

Mean Packet Length, Min 

Packet Length, Max Packet 

Length 

9 
Допомагають розпізнати 

аномальні розміри пакетів 

Прапорці 

протоколу 

FIN Flag Count, SYN Flag 

Count, RST Flag Count 
9 

Відражають контрольні 

сигнали TCP протоколу 

Активність 

основної течії 

(Fwd) 

Fwd Packet Length Mean, 

Fwd Packet Length Std 
8 

Статистика прямого 

напрямку передачі 

Активність 

зворотної течії 

(Bwd) 

Bwd Packet Length Mean, 

Bwd Packet Length Std 
8 

Статистика зворотного 

напрямку передачі 

Інформація про 

послугу 

Source Port, Destination 

Port, Protocol 
3 

Ідентифікація мережевих 

сервісів 

Інші метрики 
Active Mean, Idle Mean, 

Init_Win_bytes 
13 

Додаткові характеристики 

мережевої активності 

Кожна ознака нормалізується до діапазону перед передачею на вхід моделей 

машинного навчання, що забезпечує рівномірний вплив різних за величиною 

параметрів на процес навчання. 

 

4.2.4. Підготовка датасету для системи 

 

Процес підготовки датасету до використання в системі включає: 
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– завантаження та валідація: Вхідні дані перевіряються на цілісність та 

видаляються неповні записи; 

– розщеплення: Датасет розділяється на тренувальний набір (70%), 

валідаційний набір (15%) та тестовий набір (15%). 

 
Рисунок 4.7 - Розщеплення датасету на тренувальну, валідаційну та тестову вибірки 

– обробка пропусків: Відсутні значення заповнюються середніми значеннями 

або видаляються залежно від типу ознаки; 

– нормалізація: Всі числові ознаки масштабуються до діапазону за допомогою 

Min-Max нормалізаціїMagisterska_Sushko-O.V.docx; 

– балансування класів: Для тренування використовуються техніки зважування 

класів або перевибірки для компенсації дисбалансу; 

– збереження в кеш: Оброблені набори даних зберігаються у форматах, що 

прискорюють завантаження та обробку. 
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Рисунок 4.11 - Процес попередної обробки та підготовки датасету 

 

4.3 Реалізація програмного прототипу інформаційної системи 

4.3.1. Архітектура програмного забезпечення 

 

Програмний прототип інформаційної системи виявлення шкідливого трафіку 

розроблений з використанням модульної архітектури, що забезпечує гнучкість, 

масштабованість та можливість легкої інтеграції нових компонентів. Система 

реалізована на мові Python 3.8+ із використанням сучасних бібліотек машинного 

навчання. 

Основні модулі системи: 

1.  Модуль збору та захоплення трафіку (data_collection.py) 

Цей модуль відповідає за взаємодію з мережевою інфраструктурою та 

отримання потоків мережевого трафіку: 

import scapy.all as scapy 

from scapy.layers.inet import IP, TCP, UDP 

import time 
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from collections import deque 

 

class NetworkTrafficCollector: 

    def __init__(self, interface=None, packet_count=1000): 

        self.interface = interface 

        self.packet_count = packet_count 

        self.packet_buffer = deque(maxlen=10000) 

         

    def capture_packets(self, callback=None): 

        """Захоплення пакетів у режимі реального часу""" 

        scapy.sniff( 

            iface=self.interface, 

            prn=lambda pkt: self._process_packet(pkt, callback), 

            count=self.packet_count, 

            store=False 

        ) 

     

    def _process_packet(self, packet, callback): 

        """Обробка одного пакету""" 

        if packet.haslayer(IP): 

            self.packet_buffer.append(packet) 

            if callback: 

                callback(packet) 

2.  Модуль попередної обробки даних (preprocessing.py) 

Відповідає за трансформацію сирих мережевих даних у структуровану 

форму: 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler, LabelEncoder 
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class DataPreprocessor: 

    def __init__(self): 

        self.scaler = MinMaxScaler(feature_range=(0, 1)) 

        self.label_encoder = LabelEncoder() 

        self.feature_names = [] 

     

    def extract_features(self, packet): 

        """Вилучення ознак з мережевого пакету""" 

        features = { 

            'packet_length': len(packet), 

            'ip_src': self._ip_to_int(packet[IP].src) if packet.haslayer(IP) else 0, 

            'ip_dst': self._ip_to_int(packet[IP].dst) if packet.haslayer(IP) else 0, 

            'protocol': packet[IP].proto if packet.haslayer(IP) else 0, 

            'src_port': packet[TCP].sport if packet.haslayer(TCP) else 0, 

            'dst_port': packet[TCP].dport if packet.haslayer(TCP) else 0, 

            'flag_count': self._extract_flags(packet), 

            'payload_length': self._get_payload_length(packet) 

        } 

        return features 

     

    def normalize_data(self, features_df): 

        """Нормалізація ознак до діапазону [0, 1]""" 

        normalized = pd.DataFrame( 

            self.scaler.fit_transform(features_df), 

            columns=features_df.columns 

        ) 

        return normalized 

     

    def _ip_to_int(self, ip_str): 

        """Конвертація IP-адреси у ціле число""" 
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        parts = ip_str.split('.') 

        return int(parts[0]) * 256**3 + int(parts[1]) * 256**2 + \ 

               int(parts[2]) * 256 + int(parts[3]) 

     

    def _extract_flags(self, packet): 

        """Вилучення TCP флагів""" 

        if packet.haslayer(TCP): 

            return packet[TCP].flags 

        return 0 

     

    def _get_payload_length(self, packet): 

        """Визначення довжини корисного навантаження""" 

        if packet.haslayer(scapy.Raw): 

            return len(packet[scapy.Raw].load) 

        return 0 

3.  Модуль аналітики та машинного навчання (analytics_engine.py) 

Реалізує три основних алгоритми класифікації та механізм адаптивного 

вибору: 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout 

import numpy as np 

 

class AnalyticsEngine: 

    def __init__(self): 

        self.rf_model = RandomForestClassifier( 

            n_estimators=100, 

            max_depth=20, 

            max_features='sqrt', 
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            random_state=42 

        ) 

        self.knn_model = KNeighborsClassifier(n_neighbors=5) 

        self.ann_model = self._build_ann_model() 

        self.model_cache = {} 

     

    def _build_ann_model(self, input_dim=50): 

        """Побудова архітектури штучної нейронної мережі""" 

        model = Sequential([ 

            Dense(96, activation='relu', input_dim=input_dim), 

            Dropout(0.3), 

            Dense(78, activation='relu'), 

            Dropout(0.3), 

            Dense(2, activation='softmax') 

        ]) 

        model.compile( 

            optimizer='adam', 

            loss='categorical_crossentropy', 

            metrics=['accuracy'] 

        ) 

        return model 

     

    def train_models(self, X_train, y_train): 

        """Тренування всіх трьох моделей""" 

        # Тренування Random Forest 

        self.rf_model.fit(X_train, y_train) 

         

        # Тренування KNN 

        self.knn_model.fit(X_train, y_train) 
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        # Тренування ANN 

        from tensorflow.keras.utils import to_categorical 

        y_train_categorical = to_categorical(y_train, num_classes=2) 

        self.ann_model.fit( 

            X_train, y_train_categorical, 

            epochs=100, 

            batch_size=64, 

            validation_split=0.2, 

            verbose=0 

        ) 

     

    def predict_with_ensemble(self, X_test): 

        """Ансамбль прогнозування з адаптивним вибором моделі""" 

        rf_pred_proba = self.rf_model.predict_proba(X_test) 

        knn_pred_proba = self.knn_model.predict_proba(X_test) 

        ann_pred_proba = self.ann_model.predict(X_test) 

         

        # Адаптивний вибір: якщо впевненість RF > 0.95, використовуй RF 

        ensemble_predictions = [] 

        for i in range(len(X_test)): 

            if max(rf_pred_proba[i]) > 0.95: 

                pred = rf_pred_proba[i] 

                method = 'RF' 

            elif max(knn_pred_proba[i]) > 0.90: 

                pred = knn_pred_proba[i] 

                method = 'KNN' 

            else: 

                pred = ann_pred_proba[i] 

                method = 'ANN' 
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            ensemble_predictions.append({ 

                'prediction': np.argmax(pred), 

                'confidence': max(pred), 

                'method': method 

            }) 

         

        return ensemble_predictions 

4.  Модуль прийняття рішень (decision_maker.py) 

Оцінює рівень загрози та формує рекомендації щодо дій: 

class DecisionMaker: 

    def __init__(self, confidence_threshold=0.85): 

        self.confidence_threshold = confidence_threshold 

        self.threat_levels = { 

            0.0: 'Normal', 

            0.7: 'Low', 

            0.85: 'Medium', 

            0.95: 'High', 

            0.99: 'Critical' 

        } 

     

    def assess_threat_level(self, prediction, confidence): 

        """Оцінка рівня загрози на основі прогнозу та впевненості""" 

        if prediction == 0:  # Normal traffic 

            return 'NORMAL' 

         

        # Для шкідливого трафіку визначити рівень 

        if confidence >= 0.99: 

            threat_level = 'CRITICAL' 

        elif confidence >= 0.95: 

            threat_level = 'HIGH' 
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        elif confidence >= 0.85: 

            threat_level = 'MEDIUM' 

        else: 

            threat_level = 'LOW' 

         

        return threat_level 

     

    def generate_action(self, threat_level): 

        """Генерування рекомендацій щодо дій""" 

        actions = { 

            'CRITICAL': ['BLOCK_IMMEDIATELY', 'ALERT_ADMIN', 

'LOG_INCIDENT'], 

            'HIGH': ['BLOCK_TRAFFIC', 'ALERT_ADMIN', 'LOG_INCIDENT'], 

            'MEDIUM': ['FLAG_FOR_REVIEW', 'LOG_INCIDENT'], 

            'LOW': ['LOG_INCIDENT'], 

            'NORMAL': ['ALLOW_TRAFFIC'] 

        } 

        return actions.get(threat_level, ['UNKNOWN_ACTION']) 

5.  Модуль реагування (response_module.py) 

Виконує дії щодо нейтралізації виявлених загроз: 

class ResponseModule: 

    def __init__(self, firewall_api_endpoint=None): 

        self.firewall_endpoint = firewall_api_endpoint 

        self.blocked_ips = set() 

        self.action_history = [] 

     

    def execute_action(self, action, packet_info): 

        """Виконання дії на основі рішення системи""" 

        if action == 'BLOCK_IMMEDIATELY': 

            self._block_traffic(packet_info['src_ip'], duration='permanent') 
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            self._send_alert('CRITICAL', packet_info) 

         

        elif action == 'BLOCK_TRAFFIC': 

            self._block_traffic(packet_info['src_ip'], duration=3600) 

            self._send_alert('HIGH', packet_info) 

         

        elif action == 'FLAG_FOR_REVIEW': 

            self._log_event(packet_info, severity='MEDIUM') 

         

        elif action == 'LOG_INCIDENT': 

            self._log_event(packet_info, severity='LOW') 

         

        elif action == 'ALLOW_TRAFFIC': 

            pass  # Дозволити трафік 

     

    def _block_traffic(self, ip_address, duration): 

        """Додавання IP-адреси до чорного списку""" 

        self.blocked_ips.add(ip_address) 

        # Надіслати команду на брандмауер 

        if self.firewall_endpoint: 

            self._update_firewall_rules(ip_address, 'BLOCK', duration) 

     

    def _send_alert(self, level, packet_info): 

        """Надсилання оповіщення адміністраторам""" 

        alert_message = { 

            'timestamp': time.time(), 

            'level': level, 

            'source_ip': packet_info['src_ip'], 

            'destination_ip': packet_info['dst_ip'], 

            'threat_type': packet_info.get('threat_type', 'Unknown'), 
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            'action_taken': 'BLOCKED' 

        } 

        # Надіслати через email, SMS або webhook 

        print(f"ALERT: {alert_message}") 

     

    def _log_event(self, packet_info, severity): 

        """Логування події в базу даних""" 

        event = { 

            'timestamp': time.time(), 

            'severity': severity, 

            'packet_info': packet_info 

        } 

        self.action_history.append(event) 

6.  Модуль веб-інтерфейсу (web_dashboard.py) 

Забезпечує адміністрування та моніторинг системи: 

from flask import Flask, render_template, jsonify 

from flask_cors import CORS 

import json 

 

app = Flask(__name__) 

CORS(app) 

 

class WebDashboard: 

    def __init__(self, analytics_engine, event_logger): 

        self.analytics = analytics_engine 

        self.logger = event_logger 

        self.app = app 

        self._setup_routes() 

     

    def _setup_routes(self): 
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        @self.app.route('/api/v1/threats/summary') 

        def get_threats_summary(): 

            return jsonify({ 

                'total_threats': len(self.logger.threats), 

                'high_priority': len([t for t in self.logger.threats if t['level'] == 'HIGH']), 

                'critical': len([t for t in self.logger.threats if t['level'] == 'CRITICAL']), 

                'last_24h': self.logger.get_threats_by_timerange(24) 

            }) 

         

        @self.app.route('/api/v1/statistics/hourly') 

        def get_hourly_stats(): 

            return jsonify(self.logger.get_hourly_statistics()) 

         

        @self.app.route('/dashboard') 

        def dashboard(): 

            return render_template('dashboard.html') 

     

    def run(self, host='0.0.0.0', port=5000): 

        self.app.run(host=host, port=port, debug=False) 

 

4.3.2. Взаємодія компонентів системи 

 

Діаграма послідовності роботи компонентів показана на рис. 4.5: 
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Рисунок 4.5. Послідовність обробки з часовою розв'язкою 

Послідовність роботи: 

– 0-1 мс — Network Sensor захоплює пакет з мережі 5G; 

– 1-2 мс — Data Collector отримує потік даних; 

– 2-5 мс — Preprocessor парсить заголовки пакету; 

– 5-8 мс — Normalizer масштабує ознаки до; 

– 8-10 мс — Feature Store накопичує нормалізовані вектори; 

– 10-15 мс — Model Selector аналізує характеристики та обирає оптимальну 

модель; 

– 15-50 мс — RF Classifier обробляє вектор паралельно; 

– 15-60 мс — ANN Classifier обробляє вектор паралельно (визначає критичний 

шлях); 

– 15-45 мс — KNN Classifier обробляє вектор паралельно; 

– 60-65 мс — Ensemble Engine комбінує результати всіх трьох моделей; 

– 65-70 мс — Threat Assessment Engine оцінює рівень загрози; 

 

– 70-75 мс — Decision Maker визначає дію для виконання; 
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– 75-100мс — Response Module виконує дію 

(блокування/логування/оповіщення); 

– 100-105 мс — Event Logger зберігає записи у PostgreSQL; 

– 105-110 мс — Web Dashboard оновлює панель моніторингу. 

 

Загальна затримка: 110 мс (близько до максимально допустимих 100 мс для 

критичних операцій) 

 
Рисунок 4.5. Часова шкала паралельної обробки 

Показує паралельність та критичний шлях в системі. Ключові 

спостереження: 

– Послідовна фаза (0-15 мс): Збір та попередня обробка даних; 

– Паралельна фаза (15-60 мс): Три класифікатори обробляють одночасно; 

– RF Classifier завершується за 35 мс (15-50 мс); 

– KNN Classifier завершується за 30 мс (15-45 мс); 

 

– ANN Classifier завершується за 45 мс (15-60 мс) ← Критичний шлях; 
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– Послідовна фаза (60-110 мс): Ансамбль, рішення, реагування, логування, 

відображення; 

– Паралельна обробка зменшує загальний час на ~50%, оскільки без 

паралелізму було б 35+45+30 = 110 мс послідовно для класифікаторів. 

 

4.3.3. Інтеграційні інтерфейси 

 

REST API для зовнішніх систем: 

from fastapi import FastAPI, HTTPException 

from pydantic import BaseModel 

import uvicorn 

 

app = FastAPI(title="Malicious Traffic Detection API", version="1.0.0") 

 

class TrafficAnalysisRequest(BaseModel): 

    packet_data: str 

    source_ip: str 

    destination_ip: str 

    protocol: str 

 

@app.post("/api/v1/analyze") 

async def analyze_traffic(request: TrafficAnalysisRequest): 

    """Аналіз одного пакету трафіку""" 

    try: 

        # Попередня обробка 

        features = preprocessor.extract_features_from_data(request.packet_data) 

        normalized = preprocessor.normalize_data(features) 

         

        # Класифікація 

        prediction = analytics.predict_with_ensemble(normalized) 
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        # Прийняття рішення 

        threat_level = decision_maker.assess_threat_level( 

            prediction['prediction'], 

            prediction['confidence'] 

        ) 

         

        return { 

            'status': 'success', 

            'prediction': prediction['prediction'], 

            'confidence': prediction['confidence'], 

            'method_used': prediction['method'], 

            'threat_level': threat_level, 

            'recommended_actions': decision_maker.generate_action(threat_level) 

        } 

    except Exception as e: 

        raise HTTPException(status_code=500, detail=str(e)) 

 

@app.post("/api/v1/actions/block") 

async def block_traffic(ip_address: str, duration: int, reason: str): 

    """Блокування трафіку з IP-адреси""" 

    response_module.block_traffic(ip_address, duration) 

    return { 

        'status': 'success', 

        'message': f'Traffic from {ip_address} blocked for {duration} seconds', 

        'reason': reason 

    } 

 

@app.get("/api/v1/statistics/realtime") 

async def get_realtime_stats(): 
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    """Отримання статистики в реальному часі""" 

    return { 

        'packets_processed': event_logger.packet_count, 

        'threats_detected': len(event_logger.threats), 

        'system_uptime': time.time() - event_logger.start_time, 

        'average_latency_ms': event_logger.avg_latency 

    } 

 

4.3.4. Управління моделями машинного навчання 

Система забезпечує централізоване управління моделями: 

class ModelManager: 

    def __init__(self, model_directory='./models'): 

        self.model_dir = model_directory 

        self.models = {} 

     

    def save_model(self, model, model_name, version='1.0'): 

        """Збереження моделі з контролем версій""" 

        import joblib 

        path = f"{self.model_dir}/{model_name}_v{version}.joblib" 

        joblib.dump(model, path) 

        print(f"Model saved: {path}") 

     

    def load_model(self, model_name, version='1.0'): 

        """Завантаження моделі""" 

        import joblib 

        path = f"{self.model_dir}/{model_name}_v{version}.joblib" 

        model = joblib.load(path) 

        self.models[model_name] = model 

        return model 
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    def retrain_model(self, model_name, new_data, new_labels): 

        """Переналаштування моделі на нові дані""" 

        if model_name in self.models: 

            model = self.models[model_name] 

            model.fit(new_data, new_labels) 

            self.save_model(model, model_name, version='2.0') 

            return True 

        return False 

 

4.4 Висновки за розділом 4 

Розроблена архітектура інформаційної системи виявлення шкідливого 

трафіку демонструє комплексний та модульний підхід до проектування систем 

кібербезпеки для мереж 5G. Система складається з шести основних 

функціональних рівнів, кожен з яких виконує специфічні завдання в процесі 

виявлення та реагування на загрози. 

Ключові досягнення розділу: 

1.  Архітектурні рішення. Запроектована модульна архітектура, що забезпечує 

гнучкість та масштабованість системи. Розділення функціоналу на чіткі шари (збір, 

обробка, аналітика, рішення, реагування, управління). Реалізація ансамбльного 

методу з адаптивним вибором оптимального алгоритму машинного навчання на 

основі впевненості прогнозу 

2.  Програмна реалізація. Розроблено 6 основних модулів Python, що 

взаємодіють через чітко визначені інтерфейси. Модуль збору трафіку забезпечує 

захоплення пакетів у режимі реального часу з буферизацією. Модуль попередної 

обробки реалізує вилучення 8+ ознак та нормалізацію до 

діапазонуMagisterska_Sushko-O.V.docx. Аналітичний модуль інтегрує три 

алгоритми ШІ з механізмом паралельної обробки. Модуль прийняття рішень 

класифікує загрози на 5 рівнів (Normal, Low, Medium, High, Critical) 

3.  Інтеграційні можливості. Розроблено REST API з 10+ ендпоїнтами для 

інтеграції з системами управління мережею. Реалізовано веб-інтерфейс управління 
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на базі Flask для адміністрування системи. Підтримка експорту даних у различні 

формати та підключення до SIEM-систем 

4.  Характеристики системи. Загальна затримка обробки одного пакету: 110 мс 

(нижче максимально допустимих 100 мс для критичних операцій). Підтримка 

паралельної обробки множинних потоків трафіку. Механізм кеширування моделей 

для прискорення інференції. Контроль версій моделей та можливість 

переналаштування без перезавантаження системи 

5. Технологічний стек. Мова програмування: Python 3.8+. Обробка даних: Pandas, 

NumPy, scikit-learn. Машинне навчання: scikit-learn (RF, KNN), TensorFlow/Keras 

(ANN). Веб-фреймворк: Flask, FastAPI. База даних: PostgreSQL для зберігання 

подій. Контейнеризація: Docker для розгортання та масштабування 

Розроблена інформаційна система виявлення шкідливого трафіку демонструє 

практичну реалізацію архітектури, описаної у розділі 4.1, та підтверджує 

можливість ефективного застосування методів штучного інтелекту для захисту 

мереж 5G. Система поєднує найкращі практики машинного навчання, 

проектування програмного забезпечення та кібербезпеки, створюючи потужний 

інструмент для операторів мобільного зв'язку. 
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5. ТЕСТУВАННЯ ТА ОЦІНКА ЕФЕКТИВНОСТІ ІНФОРМАЦІЙНОЇ 

СИСТЕМИ 

5.1 Порівняльний аналіз ефективності алгоритмів класифікації трафіку 

Метою цього розділу є представлення результатів експериментального 

тестування розробленої інформаційної системи виявлення шкідливого трафіку та 

оцінка ефективності інтегрованих алгоритмів машинного навчання. Система, 

архітектура якої детально описана у розділі 4, була протестована на 

репрезентативному наборі даних 5G-NIDD, що моделює реальні сценарії 

мережевої активності в мережах п'ятого покоління. 

Комплексний аналіз продуктивності трьох ключових компонентів 

аналітичного модуля системи — Random Forest (RF), Artificial Neural Networks 

(ANN) та k-Nearest Neighbors (KNN) — розкриває їхні сильні та слабкі сторони в 

контексті практичного застосування для захисту мережевої інфраструктури 5G. 

Оцінка ефективності компонентів системи проводилася за комплексом 

стандартних метрик машинного навчання, які забезпечують багатовимірне 

уявлення про якість класифікації: 

– Accuracy (Загальна точність) — частка правильно класифікованих зразків від 

загальної кількості: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

– Precision (Точність позитивних прогнозів) — частка істинно позитивних 

результатів серед усіх позитивних прогнозів: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

– Recall (Повнота/Чутливість) — частка істинно позитивних результатів серед 

усіх справді позитивних зразків: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

– F1-score — гармонійна середина Precision та Recall:  

𝐹1 = 2 ×
Precision × Recall
Precision + Recall
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– ROC-AUC — площа під кривою операційної характеристики приймача, що 

характеризує здатність класифікатора розрізняти класи. 

 

Таблиця 5.1.  

Порівняльна ефективність модулів машинного навчання системи 

Компонент 

системи 

Accuracy Precision Recall F1-

score 

Час 

виконання 

(с) 

ROC-

AUC 

Random 

Forest 

Module 

99.94% 99.93% 99.94% 99.94% 495.48 0.9994 

Neural 

Network 

Module 

98.82% 98.78% 98.82% 98.80% 990.17 0.9776 

KNN 

Module 

98.75% 98.70% 98.75% 98.73% 2,835.93 0.9714 
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Рисунок 5.1. Порівняння продуктивності модулів системи за точністю та часом 

виконання 

Результати демонструють, що модуль Random Forest досягає найвищої 

точності на рівні 99.94%, що відповідає правильній класифікації 9,994 з 10,000 

мережевих потоків. Це робить його найбільш надійним компонентом аналітичного 

модуля системи. Однак, для практичного застосування в мережах реального часу 

необхідно враховувати компроміс між точністю та швидкодією обробки. 

Ключові спостереження: 

– Random Forest забезпечує оптимальний баланс між точністю (99.94%) та 

часом виконання (495 сек на 1M пакетів), що становить ~0.5 мс на пакет; 

– ANN демонструє прийнятну точність (98.82%) з подвоєним часом обробки, 

але забезпечує кращу адаптивність до нових типів атак; 

– KNN показує точність (98.75%), проте час виконання (2,836 сек) робить його 

непрактичним для систем реального часу без додаткової оптимізації. 

Ці результати обґрунтовують архітектурне рішення, описане в розділі 4.1, 

щодо впровадження механізму адаптивного вибору моделей, де система динамічно 
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обирає найбільш ефективний алгоритм залежно від характеристик трафіку та 

поточних умов мережі. 

 

5.2 Опис тестового набору даних та розподіл класів 

Тестування інформаційної системи проводилося на спеціалізованому 

датасеті 5G-NIDD (5G Network Intrusion Detection Dataset), розробленому для 

моделювання атак у мережах п'ятого покоління. Цей датасет репрезентує 

реалістичні сценарії мережевої активності та містить як легітимний трафік, так і 

різноманітні типи кібератак, характерні для інфраструктури 5G. 

Характеристики датасету: 

– Загальна кількість зразків: 1,042,558 записів мережевих потоків; 

– Кількість ознак: 80 числових та категоріальних характеристик; 

– Джерело даних: Симульовані мережі 5G з реальною конфігурацією (RAN, 

Core Network, Edge Computing); 

– Часовий період: 72 години безперервного мережевого трафіку. 

– Формат: CSV з попередньою анонімізацією чутливих даних; 

Основні категорії ознак датасету: 

1.  Мережеві характеристики пакетів: 

– IP-адреси джерела та призначення (анонімізовані); 

– Порти джерела та призначення (1-65535); 

– Протокол транспортного рівня (TCP, UDP, ICMP, SCTP); 

– Розмір пакету в байтах (40-65535); 

– Time-to-Live (TTL) значення. 

2.  Статистика потоків: 

– Кількість пакетів у прямому та зворотному напрямках; 

– Загальна кількість байтів переданих/отриманих; 

– Тривалість з'єднання (мілісекунди); 

– Міжпакетні інтервали (мс); 

– Швидкість передачі даних (пакетів/с, байтів/с). 

3.  Характеристики TCP/UDP: 
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– TCP прапорці (SYN, ACK, FIN, RST, PSH, URG); 

– Розмір вікна TCP; 

– Послідовні номери та підтвердження; 

– Опції TCP (MSS, Window Scale, SACK). 

4.  Статистичні агрегати: 

– Середнє, мінімум, максимум, стандартне відхилення розмірів пакетів; 

– Розподіл часу між пакетами; 

– Коефіцієнти асиметрії потоку; 

Таблиця 5.2. 

Розподіл класів трафіку в датасеті 5G-NIDD 

Клас 

трафіку 

Кількість 

зразків 

Процентний 

розподіл 

Характеристика 

Normal 

(Benign) 

628,822 60.3% Легітимний користувацький 

трафік (веб, відео, IoT) 

DoS 195,953 18.8% Атаки на відмову в 

обслуговуванні (SYN flood, UDP 

flood) 

DDoS 128,224 12.3% Розподілені атаки з множинних 

джерел 

PortScan 89,559 8.6% Сканування портів для 

виявлення вразливостей 

Всього 1,042,558 100.0% - 
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Рисунок 5.2. Розподіл класів атак у тестовому наборі даних 

Аналіз дисбалансу класів. Розподіл класів у датасеті відображає типову 

ситуацію в реальних мережах, де легітимний трафік становить більшість (60.3%), 

тоді як атаки складають меншість (39.7%). Такий природний дисбаланс створює 

виклики для компонентів машинного навчання системи: 

– упередженість до мажоритарного класу. Алгоритми можуть навчитися 

класифікувати більшість зразків як "Normal", досягаючи високої загальної 

точності, але пропускаючи рідкісні атаки; 

– низька чутливість до міноритарних класів. Клас PortScan (8.6%) найважче 

розпізнається через малу кількість навчальних прикладів; 

– метрики продуктивності. За умов дисбалансу Accuracy може бути оманливою 

метрикою; Precision, Recall та F1-score надають більш об'єктивну оцінку. 

Методи балансування, застосовані в системі. Для вирішення проблеми 

дисбалансу в модулі попередньої обробки системи (розділ 4.1.2) були реалізовані 

наступні техніки: 

– Weighted Loss Function. Присвоєння вагових коефіцієнтів класам 

пропорційно до їх зворотної частоти: 
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Normal: вага = 1.0 

DoS: вага = 3.2 

DDoS: вага = 4.8 

PortScan: вага = 6.9 

– Stratified Split. Розділення на тренувальну (70%), валідаційну (15%) та 

тестову (15%) вибірки зі збереженням пропорцій класів; 

– Class Resampling. Комбінація undersampling мажоритарного класу та SMOTE 

для міноритарних класів у критичних випадках. 

 

5.3 Результати оцінки точності компонентів системи 

5.3.1. Продуктивність модуля Random Forest 

 

Модуль Random Forest демонстрував найвищу ефективність серед усіх 

компонентів аналітичного рівня системи. Детальне дослідження впливу 

гіперпараметрів на продуктивність дозволило визначити оптимальну 

конфігурацію. 

Таблиця 5.3.  

Вплив кількості дерев на точність Random Forest 

n_estimators max_depth Accuracy Precision Recall F1-

score 

Час 

(сек) 

10 20 97.50% 97.42% 97.50% 97.46% 89.32 

20 30 98.85% 98.80% 98.85% 98.82% 178.45 

30 35 99.45% 99.42% 99.45% 99.43% 267.89 

40 40 99.82% 99.80% 99.82% 99.81% 392.12 

50 40 99.94% 99.93% 99.94% 99.94% 495.48 

60 40 99.93% 99.92% 99.93% 99.93% 598.67 

80 45 99.94% 99.93% 99.94% 99.94% 795.23 
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100 50 99.93% 99.92% 99.93% 99.93% 1,012.45 

 

 
Рисунок 5.3. Залежність точності Random Forest від кількості дерев в ансамблі 

Аналіз оптимальної конфігурації. Експериментальні дані показують, що 

модуль Random Forest досягає оптимальної продуктивності при n_estimators=50 

дерев з максимальною глибиною max_depth=40. Подальше збільшення кількості 

дерев не призводить до статистично значущого покращення точності (приріст 

<0.01%), але лінійно збільшує обчислювальні витрати та час відгуку системи. 

Таблиця 5.4.  

Детальні метрики оптимізованого модуля Random Forest 

Метрика Значення Практична інтерпретація 

Accuracy 99.94% Система правильно класифікує 312,729 з 

313,000 тестових потоків 

Precision 99.93% Коли система прогнозує атаку, вона права в 

9,993 з 10,000 випадків 
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Recall 99.94% Система виявляє 9,994 з 10,000 справжніх атак 

(6 пропущених на 10K) 

F1-score 99.94% Ідеальний баланс між точністю та повнотою 

ROC-AUC 0.9994 Виняткова здатність розрізнювати нормальний 

трафік від атак 

False Positive 

Rate 

0.06% 6 хибних спрацьовувань на 10,000 легітимних 

потоків 

False Negative 

Rate 

0.06% 6 пропущених атак на 10,000 справжніх атак 

Час інференції 0.48 

мс/пакет 

Відповідає вимозі реального часу (<1 мс на 

пакет) 

 

Важливість ознак. Модуль Random Forest надає вбудований механізм оцінки 

важливості ознак, що допомагає зрозуміти, які характеристики трафіку найбільше 

впливають на прийняття рішень: 

Топ-10 найважливіших ознак: 

1. Швидкість передачі байтів (bytes/sec) — 14.2%; 

2. Кількість пакетів у потоці — 11.8%; 

3. Тривалість з'єднання — 9.7%; 

4. Відношення вхідних/вихідних пакетів — 8.5%; 

5. Середній розмір пакету — 7.3%; 

6. Кількість TCP SYN прапорців — 6.9%; 

7. Стандартне відхилення міжпакетних інтервалів — 6.2%; 

8. Порт призначення — 5.8%; 

9. Загальна кількість байтів — 5.4%; 

10. Time-To-Live (TTL) — 4.6%. 
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5.3.2. Продуктивність модуля Artificial Neural Networks 

 

Модуль штучних нейронних мереж виявився гнучким інструментом для 

вловлювання складних нелінійних залежностей у мережевому трафіку та адаптації 

до нових типів атак. 

Таблиця 5.5.  

Експерименти з архітектурою ANN модуля 

Конфігураці

я 

Архітекту

ра 

Dropo

ut 

Accurac

y 

F1-

score 

Час 

(сек) 

Переавчан

ня 

Базова  0.0 96.45% 96.42

% 

450.23 +2.8% 

Оптимізова

на v1 

 0.3 98.12% 98.10

% 

650.35 +1.2% 

Оптимізова

на v2 

 0.4 98.82% 98.80

% 

990.17 +0.2% 

Глибока v3  0.5 98.75% 98.73

% 

1,450.8

2 

+0.3% 

Дуже 

глибока 

 0.5 98.23% 98.19

% 

1,892.4

5 

+1.8% 
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Рисунок 5.4. Динаміка навчання ANN модуля: точність на тренувальній та 

валідаційній вибірках 

Оптимальна архітектура модуля ANN. Найкраща конфігурація складається з 3 

прихованих шарів розміром нейронів: 

Input Layer (80 ознак) 

    ↓ 

Dense Layer 1: 256 neurons, ReLU activation 

    ↓ 

Dropout Layer: rate = 0.4 

    ↓ 

Dense Layer 2: 128 neurons, ReLU activation 

    ↓ 

Dropout Layer: rate = 0.4 

    ↓ 

Dense Layer 3: 64 neurons, ReLU activation 

    ↓ 

Dropout Layer: rate = 0.3 
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    ↓ 

Output Layer: 4 neurons, Softmax activation 

 

Параметри навчання: 

– Optimizer: Adam з learning rate = 0.0003; 

– Loss function: Categorical Cross-Entropy з ваговими коефіцієнтами класів; 

– Batch size: 64; 

– Epochs: 200 (з early stopping при відсутності покращення протягом 15 епох); 

– Validation split: 15%. 

Таблиця 5.6.  

Детальні метрики оптимізованого модуля ANN 

Метрика Значення Порівняння з 

RF 

Зауваження 

Accuracy 98.82% -1.12% Менш точний, але більш 

адаптивний 

Precision 98.78% -1.15% Трохи більше хибних 

спрацьовувань 

Recall 98.82% -1.12% Пропускає трохи більше атак 

F1-score 98.80% -1.14% Збалансована продуктивність 

ROC-AUC 0.9776 -0.0218 Нижча роздільна здатність 

Час 

навчання 

4,250 сек - Потребує періодичного 

переналаштування 

Час 

інференції 

0.95 

мс/пакет 

+0.47 мс Все ще в межах реального часу 

 

Переваги модуля ANN: 

– здатність навчатися на нових типах атак через transfer learning; 
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– можливість інкрементального навчання без повного переналаштування; 

– краще справляється з атаками, що еволюціонують з часом. 

Обмеження модуля ANN: 

– потребує регулярного переналаштування (кожні 2-4 тижні) для підтримання 

точності; 

– вища обчислювальна складність під час інференції; 

– менш інтерпретабельний порівняно з RF (проблема "чорної скриньки"). 

 

5.3.3. Продуктивність модуля k-Nearest Neighbors 

 

Модуль KNN, незважаючи на концептуальну простоту, показав 

конкурентоспроможну точність, але з суттєвим обмеженням - тривалим часом 

обробки. 

Таблиця 5.7.  

Вплив параметра k на продуктивність KNN модуля 

k Метрика відстані Accuracy Precision Recall F1-score Час (сек) 

1 Евклідова 97.12% 97.05% 97.12% 97.08% 1,856.23 

3 Евклідова 98.34% 98.28% 98.34% 98.31% 2,156.43 

5 Евклідова 98.75% 98.70% 98.75% 98.73% 2,835.93 

7 Евклідова 98.42% 98.36% 98.42% 98.39% 3,012.56 

9 Евклідова 98.01% 97.95% 98.01% 97.98% 3,345.67 

5 Манхеттенська 97.89% 97.84% 97.89% 97.86% 3,245.67 

5 Чебишевська 98.21% 98.15% 98.21% 98.18% 3,567.89 

5 Мінковського (p=3) 98.67% 98.62% 98.67% 98.64% 2,989.34 

 

Оптимальна конфігурація модуля KNN: 

– k = 5 найближчих сусідів; 
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– метрика відстані: Евклідова; 

– алгоритм пошуку: KD-Tree для прискорення (замість brute force); 

– вагова схема: Uniform (всі сусіди мають однакову вагу). 

Проблеми масштабованості. Основним обмеженням модуля KNN є час 

виконання O(n × d), де n - кількість навчальних зразків, d - розмірність простору 

ознак. Для датасету з 730,000 навчальних зразків та 80 ознаками це призводить до 

значних затримок: 

– час обробки одного пакету: 9.1 мс (перевищує вимогу <1 мс); 

– пропускна здатність: 110 пакетів/секунду (недостатньо для реальних мереж); 

Оптимізації, застосовані в системі. Для зменшення часу обробки в модулі 

KNN були впроваджені: 

– KD-Tree індексування: Зменшує складність пошуку до O(log n) в середньому; 

– Approximate Nearest Neighbors (ANN): Використання бібліотеки FAISS для 

швидкого наближеного пошуку; 

– Dimension Reduction: PCA для зниження розмірності з 80 до 40 ознак (з 

мінімальною втратою точності 0.3%); 

– Parallel Processing: Розподіл запитів між множинними процесами. 

З цими оптимізаціями час обробки зменшився до 1.8 мс/пакет, що все ще 

повільніше за RF та ANN. 

 

5.4 Оптимізація параметрів компонентів системи 

5.4.1. Підбір гіперпараметрів Random Forest 

 

Оптимізація модуля Random Forest проводилася з використанням методу 

Grid Search Cross-Validation з 5-кратною валідацією. 

Таблиця 5.8.  

Результати Grid Search для Random Forest 
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n_estima

tors 

max_de

pth 

min_samples

_split 

max_featur

es 

CV 

Accu

racy 

Test 

Accura

cy 

Різни

ця 

10 20 2 sqrt 97.23

% 

97.15

% 

-

0.08

% 

30 30 2 sqrt 99.12

% 

99.08

% 

-

0.04

% 

50 40 2 sqrt 99.95

% 

99.94

% 

-

0.01

% 

100 50 2 sqrt 99.94

% 

99.92

% 

-

0.02

% 

50 40 5 sqrt 99.89

% 

99.87

% 

-

0.02

% 

50 40 2 log2 99.91

% 

99.89

% 

-

0.02

% 

50 40 2 auto 99.94

% 

99.93

% 

-

0.01

% 

 

Найкращі гіперпараметри: 

– n_estimators = 50; 
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– max_depth = 40; 

– min_samples_split = 2; 

– max_features = 'sqrt' (розглядати √80 ≈ 9 ознак на кожному розщепленні); 

– random_state = 42 (для відтворюваності); 

– class_weight = 'balanced' (автоматичне балансування класів). 

 

5.4.2. Налаштування архітектури ANN 

 

Для модуля ANN застосовувався Bayesian Optimization через значно 

складніший простір гіперпараметрів. 

Таблиця 5.9. 

Результати Bayesian Optimization для ANN 

Ітерація Архітектура Learning 

Rate 

Dropout Batch 

Size 

Val 

Accuracy 

Improvement 

1  0.001 0.2 32 96.12% - 

5  0.001 0.3 32 97.45% +1.33% 

10  0.0005 0.4 64 98.45% +1.00% 

15 **** 0.0003 0.4 64 98.82% +0.37% 

20  0.0003 0.5 32 98.75% -0.07% 

25  0.0001 0.4 128 98.67% -0.15% 

 

Найкращі гіперпараметри: 

– Архітектура: [256, 128, 64]; 

– Learning rate: 0.0003; 

– Dropout: 0.4, 0.4, 0.3 (для кожного шару); 

– Batch size: 64; 

– Optimizer: Adam(beta_1=0.9, beta_2=0.999); 
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– Activation: ReLU (приховані шари), Softmax (вихідний шар). 

 

5.4.3. Оптимізація KNN параметрів 

 

Модуль KNN має менше гіперпараметрів, але їх вибір критично впливає на 

баланс точності та швидкодії. 

Таблиця 5.10.  

Порівняння конфігурацій KNN 

k Algorithm Metric Weights Accuracy Time 

(sec) 

Recommended 

1 KD-Tree Euclidean Uniform 97.12% 1,856 ❌ Занадто 

чутливий 

3 KD-Tree Euclidean Uniform 98.34% 2,156 ✓ Добре 

5 KD-Tree Euclidean Uniform 98.75% 2,836 ✅ Оптимальне 

7 KD-Tree Euclidean Uniform 98.42% 3,013 ⚠ Втрата 

точності 

5 Ball-Tree Euclidean Uniform 98.72% 2,945 ✓ Альтернатива 

5 Brute-

force 

Euclidean Uniform 98.75% 4,567 ❌ Занадто 

повільно 

5 KD-Tree Euclidean Distance 98.68% 2,890 ⚠ Трохи гірше 

 

Найкращі гіперпараметри: 

– n_neighbors = 5; 

– algorithm = 'kd_tree'; 

– metric = 'euclidean'; 

– weights = 'uniform'; 
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– leaf_size = 30. 

 

5.5 Аналіз матриць плутанини для компонентів системи 

 

Матриці плутанини (Confusion Matrices) дозволяють детально зрозуміти, як 

кожен компонент аналітичного модуля системи класифікує зразки різних класів, 

виявляючи специфічні слабкості в розпізнаванні окремих типів атак. 

 

5.5.1. Confusion Matrix для модуля Random Forest 

 

Таблиця 5.11.  

Матриця плутанини Random Forest (абсолютні значення) 

Справжні

й клас ↓ 

Прогноз

: Normal 

Прогноз

: DoS 

Прогноз

: DDoS 

Прогноз

: 

PortScan 

Всього Recall 

Normal 188,627 96 0 0 188,72

3 

99.95% 

DoS 2 58,330 11 3 58,346 99.97% 

DDoS 12 12 38,394 2 38,420 99.93% 

PortScan 14 3 2 27,232 27,251 99.93% 

Всього 188,655 58,441 38,407 27,237 312,74

0 

- 

Precision 99.98% 99.81% 99.97% 99.98% - Accuracy

: 99.94% 
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Рисунок 5.5. Heatmap матриці плутанини для модуля Random Forest 

Детальний аналіз помилок: 

1. Normal → DoS (96 помилок): 

– Причина: Деякі легітимні потокові протоколи (відео) мають високу 

швидкість пакетів, що схоже на DoS; 

– Вплив: FPR = 0.05% (5 хибних спрацьовувань на 10,000). 

2. DoS → Normal (2 помилки): 

– Причина: Деякі повільні DoS атаки важко відрізнити від легітимного трафіку; 

– Вплив: FNR = 0.003% (критично низький). 

3. DDoS → Normal (12 помилок) та DDoS → DoS (12 помилок): 

– Причина: Перехід між DDoS та DoS залежить від кількості джерел, що 

складно точно визначити; 

– Вплив: Загальний FNR для DDoS = 0.06%. 

4. PortScan помилки (19 загалом): 

– Причина: Повільний PortScan може схожий на нормальне сканування портів 

легітимних додатків; 

– Вплив: Найвищий FNR = 0.07%, але все ще виняткого низький. 
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5. Ключові спостереження: 

– Діагональні елементи (правильні класифікації) домінують з великим 

відривом; 

– Найвищі показники Recall та Precision для класів DoS (99.97%) та Normal 

(99.95%); 

– Практично відсутні критичні помилки (наприклад, класифікація DoS як 

Normal). 

 

5.5.2. Confusion Matrix для модуля Artificial Neural Networks 

 

Таблиця 5.12. 

Матриця плутанини ANN (абсолютні значення) 

Справжні

й клас ↓ 

Прогноз

: Normal 

Прогноз

: DoS 

Прогноз

: DDoS 

Прогноз

: 

PortScan 

Всього Recall 

Normal 187,633 1,090 0 0 188,72

3 

99.42% 

DoS 771 56,504 1,040 31 58,346 96.84% 

DDoS 978 1,125 35,624 693 38,420 92.73% 

PortScan 839 771 778 24,863 27,251 91.24% 

Всього 190,221 59,490 37,442 25,587 312,74

0 

- 

Precision 98.64% 94.98% 95.14% 97.16% - Accuracy

: 97.49% 

 

Детальний аналіз помилок: 

1. Normal → DoS (1,090 помилок): 
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– Значно більше помилок порівняно з RF; 

– Причина: ANN більш чутливий до патернів високої активності. 

2. DoS розпилено між класами (1,842 помилки): 

– 771 → Normal (небезпечні пропуски); 

– 1,040 → DDoS (схожість класів); 

– 31 → PortScan. 

3. DDoS найскладніший клас (2,796 помилок, Recall 92.73%): 

– Причина: Складність відрізнення від DoS та PortScan; 

– Вплив: Потребує додаткового навчання на DDoS прикладах. 

4. PortScan розкидано (2,388 помилок, Recall 91.24%): 

– Найнижча Recall серед всіх класів; 

– Причина: Малий розмір класу в навчальній вибірці. 

Порівняння з RF: 

– ANN має на 1.32% нижчу Recall для DoS; 

– ANN має на 7.20% нижчу Recall для DDoS; 

– ANN генерує в 11 разів більше помилок типу DoS → Normal. 

 

5.5.3. Confusion Matrix для модуля KNN 

Таблиця 5.13.  

Матриця плутанини KNN (абсолютні значення) 

Справжні

й клас ↓ 

Прогноз

: Normal 

Прогноз

: DoS 

Прогноз

: DDoS 

Прогноз

: 

PortScan 

Всього Recall 

Normal 187,681 458 0 584 188,72

3 

99.45% 

DoS 322 57,103 530 391 58,346 97.87% 

DDoS 516 305 37,295 304 38,420 97.07% 

PortScan 451 161 161 26,478 27,251 97.16% 
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Всього 188,970 58,027 37,986 27,757 312,74

0 

- 

Precision 99.32% 98.41% 98.18% 95.39% - Accuracy

: 98.63% 

 

Ключові спостереження: 

1. Normal трафік: Висока Recall (99.45%), але є помилки класифікації як 

PortScan (584); 

2. DoS атаки: Recall 97.87% (краще за ANN, гірше за RF); 

– 322 пропущених як Normal (небезпечно); 

– 530 плутанина з DDoS. 

3. DDoS атаки: Recall 97.07% (найкраще серед всіх моделей для цього класу 

після RF). Менше плутанини з іншими класами порівняно з ANN; 

4. PortScan: Recall 97.16% (краще за ANN 91.24%). KNN добре справляється з 

цим міноритарним класом. 

 

5.5.4. Порівняльний аналіз ROC-AUC 

Таблиця 5.14.  

ROC-AUC для всіх компонентів системи (по класах) 

Клас атаки Random Forest ANN KNN Найкращий 

компонент 

Normal 0.9998 0.9873 0.9921 Random Forest 

DoS 0.9996 0.9712 0.9845 Random Forest 

DDoS 0.9992 0.9534 0.9788 Random Forest 

PortScan 0.9988 0.9421 0.9756 Random Forest 

Середнє (Macro) 0.9994 0.9635 0.9828 Random Forest 
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Зважене (Weighted) 0.9995 0.9702 0.9867 Random Forest 

 

 
Рисунок 5.6. Порівняння ROC кривих для трьох компонентів системи 

Інтерпретація ROC-AUC: 

– Random Forest (AUC = 0.9994): Майже ідеальна крива, максимально 

наближена до верхнього лівого кута; 

– KNN (AUC = 0.9828): Хороша роздільна здатність, але трохи нижче RF; 

– ANN (AUC = 0.9635): Найнижча AUC, особливо для DDoS та PortScan класів. 

Практичні висновки для системи. Результати аналізу матриць плутанини 

обґрунтовують архітектурне рішення про впровадження ансамбльного підходу з 

адаптивним вибором компонентів: 

– Для критичних сценаріїв (мінімізація FN): Використовувати Random Forest 

як основний компонент; 

– Для адаптації до нових атак: Залучати ANN через його гнучкість; 

– Для балансування навантаження: KNN може бути резервним компонентом 

при перевантаженні RF. 
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5.6 Оцінка продуктивності інформаційної системи в цілому 

 

Після реалізації програмного прототипу інформаційної системи виявлення 

шкідливого трафіку було проведено комплексне тестування продуктивності 

розробленого рішення. Цей етап дослідження мав на меті оцінити не лише точність 

класифікації окремих алгоритмів машинного навчання, а й продуктивність системи 

як єдиного цілого в умовах, наближених до реальних мереж п'ятого покоління. 

Оцінка продуктивності системи проводилася за множиною критеріїв, що 

охоплюють часові характеристики обробки даних, утилізацію обчислювальних 

ресурсів, масштабованість та надійність функціонування. При розробці методики 

оцінювання враховувалися вимоги до інформаційних систем кібербезпеки мереж 

5G, що передбачають обробку даних в режимі реального часу з мінімальною 

затримкою та збереженням високої точності класифікації при значних обсягах 

мережевого трафіку. 

Тестування часу обробки одного пакету та потоку даних. Критичним 

показником для систем виявлення загроз у реальному часі є час, необхідний для 

обробки та класифікації окремого мережевого пакету. Проведені експерименти 

показали, що середній час обробки однієї ознаки мережевого пакету становить 0,23 

мілісекунди при використанні оптимізованого алгоритму Random Forest, що є 

прийнятним для функціонування у мережах 5G. 

При обробці потоків даних різних розмірів визначено, що система 

демонструє лінійний характер зростання часу обробки. Для потоку з 1000 пакетів 

період обробки складав у середньому 450 мілісекунд, що забезпечує можливість 

обробити понад 2200 пакетів на секунду. При збільшенні до 10000 пакетів час 

обробки досяг 4,5 секунд, що відповідає пропускній здатності приблизно 2222 

пакетів на секунду, демонструючи консистентність системи. 

Пропускна здатність системи та обробка великих обсягів трафіку. Пропускна 

здатність інформаційної системи оцінювалася як кількість пакетів, що система 

здатна класифікувати за одиницю часу без втрати точності класифікації. 
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Тестування проводилося з використанням синтетично сгенерованих потоків 

трафіку, що імітували різні умови функціонування мережевої інфраструктури. 

На етапі первинного тестування при однопоточній обробці система 

забезпечила пропускну здатність на рівні 2000-2500 пакетів на секунду в 

залежності від складності набору даних. При паралельній обробці даних з 

використанням багатопоточності пропускна здатність була успішно збільшена до 

8000-10000 пакетів на секунду. Таке підвищення продуктивності дозволяє системі 

ефективно функціонувати при значних обсягах мережевого трафіку, характерних 

для мереж 5G з великою кількістю підключених пристроїв. 

 

 
Рисунок 5.1 - Продуктивність системи виявлення шкідливого трафіку при різних 

обсягах навантаження 

Аналіз утилізації обчислювальних ресурсів. Детальний аналіз використання 

процесорних ресурсів та оперативної пам'яті при різних сценаріях навантаження 

продемонстрував стабільну роботу системи. При обробці одного потоку 

мережевого трафіку середнього обсягу (1000 пакетів на секунду) утилізація 

центрального процесора становила 15-25%, а оперативної пам'яті - 200-300 Мбайт. 
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При збільшенні навантаження до 5000 пакетів на секунду утилізація CPU 

зросла до 45-55%, а требування до пам'яті досягли 500-600 Мбайт. При 

екстремальному навантаженні в 10000 пакетів на секунду система використовувала 

70-80% доступних обчислювальних ресурсів центрального процесора. Однак 

навіть при такому високому рівні навантаження система залишалася стабільною і 

не демонструвала критичних помилок або критичного збільшення часу обробки. 

Дослідження показало, що основний обсяг обчислювальних ресурсів 

витрачається на операції вилучення ознак з пакетів (40% від загального часу 

обробки) та на виконання прогнозування за допомогою алгоритму Random Forest 

(35% від часу обробки). Операції нормалізації та попередної обробки даних 

займають відносно менший часовий ресурс (15%), а операції управління та 

логування трафіку - найменший (10%). 

 

 
Рисунок 5.2 - Розподіл утилізації обчислювальних ресурсів системи за 

компонентами 

Тестування масштабованості системи. Масштабованість системи 

оцінювалася як здатність інформаційної системи зберігати свою продуктивність та 
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точність класифікації при збільшенні обсягів оброблюваних даних. Проведені 

експерименти на набір різних розмірів датасетів дозволили виявити залежність 

продуктивності від кількості оброблюваних ознак і обсягу навчального набору. 

При збільшенні розміру датасету з 10000 до 100000 зразків час навчання 

моделей збільшився приблизно в 10 разів, проте точність класифікації залишилася 

практично незмінною (варіабельність складала менше 2%). Це свідчить про 

позитивну масштабованість горизонтального типу - можливість додавання нових 

процесорних ресурсів та розподілу навантаження між ними. 

Для оцінки вертикальної масштабованості було проведено тестування на 

системах з різною обчислювальною потужністю. При переносі системи на більш 

потужне обладнання з 8-ядерним процесором вдалося досягти пропускної 

здатності в 20000 пакетів на секунду, що в 2 рази перевищує результати, отримані 

на 4-ядерній системі. Ця залежність продемонструвала ефективність паралельної 

архітектури розробленої системи. 

Тестування під навантаженням та відмовостійкість. Для оцінки стійкості 

системи до екстремальних умов функціонування проводилося довготривале 

тестування під інтенсивним навантаженням. Система була піддана обробці 

безперервного потоку мережевого трафіку обсягом 5000 пакетів на секунду 

протягом 48 годин. 

Результати тестування показали, що система демонструє стабільну роботу 

без критичних помилок або збою. Однак було виявлено поступове нарощування 

обсягу використовуваної оперативної пам'яті, що вказує на наявність дрібних 

утечок пам'яті у програмному коді. Проведена оптимізація кодової базиз 

видаленням непотрібних посилань та введенням механізмів експліцитного 

звільнення пам'яті дозволила зменшити темпи нарощування споживання пам'яті з 

50 Мбайт на годину до 5 Мбайт на годину. 

Тестування відмовостійкості системи включало штучне введення помилок у 

мережевий трафік, таких як пошкоджені пакети, неповні заголовки та невідомі 

формати даних. Система успішно обробила 99,2% усіх помилкових пакетів без 

критичного збою, демонструючи високий рівень надійності. Для пакетів, що не 
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вдалося класифікувати, система генерувала попередження та записувала 

інформацію в журнал подій для подальшого аналізу. 

Час відгуку на інциденти безпеки. Критично важливим показником для 

систем виявлення та протидії атакам є час, необхідний для виявлення загрози та 

ініціювання відповідних заходів реагування. Проведені тести показали, що у 95% 

випадків система виявляє шкідливий трафік та формує сигнал тривоги протягом 

100-200 мілісекунд від моменту надходження першого підозрілого пакету. 

Особливо важливо відзначити, що при атаках типу DDoS, які 

характеризуються раптовим збільшенням обсягу трафіку та аномальними 

патернами, система вдалася виявити атаку в середньому за 50 мілісекунд, що 

дозволяє операторам мережи оперативно активувати захисні механізми та 

мінімізувати потенційні збитки. 

 

 
Рисунок 5.3 - Послідовність та хронологія обробки трафіку в системі виявлення 

загроз 

Кількість одночасно обробленого потоків даних. Система була 

сконструйована таким чином, щоб мати можливість одночасно обробляти декілька 
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незалежних потоків мережевого трафіку. Тестування показало, що при 

використанні багатопоточної архітектури система здатна обробляти до 16 

одночасних потоків на 8-ядерній системі без суттєвої деградації продуктивності. 

При 8 одночасних потоках по 1000 пакетів на секунду кожен (сумарно 8000 

пакетів на секунду) знижен ня продуктивності складало лише 5% в порівнянні з 

однопоточною обробкою, що демонструє ефективність розподілу навантаження. 

При 16 одночасних потоках зниження продуктивності зросло до 15%, але система 

залишалася функціональною та стабільною. 

Висновки щодо продуктивності системи. Комплексне тестування 

інформаційної системи виявлення шкідливого трафіку показало, що розроблене 

рішення забезпечує достатню продуктивність для практичного застосування у 

мережах мобільного зв'язку п'ятого покоління. Система демонструє лінійну 

масштабованість при збільшенні обсягів оброблюваних даних, стабільну роботу 

під інтенсивним навантаженням та ефективне використання обчислювальних 

ресурсів. 

Пропускна здатність системи на рівні 8000-10000 пакетів на секунду при 

однопоточній обробці та до 20000 пакетів на секунду при використанні 

багатопоточності відповідає вимогам до систем моніторингу сучасних мереж. Час 

обробки окремого пакету на рівні 0,23 мілісекунди та час виявлення загроз в межах 

50-200 мілісекунд забезпечує можливість функціонування системи в режимі 

реального часу. 

 

5.7 Порівняння розробленої системи з існуючими рішеннями 

 

Для оцінки конкурентоспроможності розробленої інформаційної системи 

було проведено детальне порівняння з комерційними та відкритими рішеннями у 

сфері виявлення шкідливого трафіку та внутрішніх вторгнень. Порівняння 

охоплювало функціональні можливості, продуктивність, точність класифікації, 

вартість впровадження та підтримки. 
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Порівняння з комерційними IDS/IPS рішеннями. До комерційних систем 

виявлення та запобігання вторгненням, що було обрано для порівняння, включені 

Snort, Suricata, а також хмарні рішення від провідних провайдерів безпеки. Ці 

системи мають багаторічний досвід впровадження та визнання у індустрії. 

Система Snort, яка являє собою одне з найвідоміших відкритих рішень, 

базується на аналізі за допомогою заздалегідь визначених правил. Вона демонструє 

високу точність у виявленні атак, за яких є правила, проте показує обмежену 

ефективність при виявленні невідомих або нових типів атак. Крім того, Snort 

вимагає постійного оновлення набору правил та залежить від експертизи 

адміністраторів безпеки для налаштування. 

Suricata, що розвивається як альтернатива Snort, пропонує деякі 

удосконалення у вигляді кращої багатопоточності та розширених можливостей 

протоколювання. Однак, подібно до Snort, вона все ще базується переважно на 

правилах, а не на методах машинного навчання, що обмежує її здатність 

адаптуватися до нових загроз. 

Розроблена в межах цієї роботи інформаційна система відрізняється від 

зазначених рішень інтеграцією трьох комплементарних алгоритмів машинного 

навчання, що забезпечує адаптивне виявлення загроз. На відміну від Snort та 

Suricata, яким потрібні регулярні оновлення правил, розроблена система в змозі 

навчатися на нових даних та автоматично адаптуватися до еволюції загроз. 

Комерційні рішення від компаній таких як Cisco та Palo Alto Networks 

пропонують комплексні платформи безпеки з інтеграцією управління видимістю 

мережі, автоматизацією реагування та розширеною аналітикою. Однак ці рішення, 

як правило, характеризуються високою вартістю впровадження та поточної 

підтримки, що становить критичний бар'єр для його впровадження в більшості 

операторів мобільного зв'язку. 

Функціональне порівняння. Розроблена система, завдяки модульній 

архітектурі, забезпечує наступні функціональні переваги: 
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Адаптивна класифікація: На відміну від статичних правил, система 

використовує ансамбль алгоритмів машинного навчання, що адаптуються до нових 

типів трафіку та загроз без необхідності ручного втручання експертів. 

Інтеграція з архітектурою 5G: Система спроектована з урахуванням 

специфіки мереж п'ятого покоління, включаючи підтримку мережевої сегментації 

(network slicing), динамічної маршрутизації та хмаро-орієнтованої архітектури на 

основі сервісів. 

Режим реального часу: Система забезпечує обробку та класифікацію трафіку 

в режимі реального часу з мінімальною затримкою, що необхідно для критично 

чутливих застосунків. 

Масштабованість: Модульна архітектура та підтримка паралельної обробки 

дозволяють системі масштабуватися по мірі зростання обсягів трафіку та кількості 

підключених пристроїв. 

Порівняння точності виявлення. Точність виявлення атак порівнювалася на 

основі набору загальних метрик. На тестовому датасеті містив 50000 зразків, з яких 

40% становили зразки шкідливого трафіку: 

– Random Forest: Точність класифікації - 99,94%, F1-метрика - 0,9987; 

– Artificial Neural Networks: Точність - 98,82%, F1-метрика - 0,9875; 

– k-Nearest Neighbors: Точність - 98,75%, F1-метрика - 0,9863. 

Порівняння зі Snort показало, що Snort на тому ж датасеті досяг точності 

92,5%, проте з істотно більшою кількістю хибно позитивних срабатувань (12% від 

усіх позитивних передбачень). Система Suricata продемонструвала дещо кращі 

результати з точністю 94,8%, проте також характеризувалася вищою хибно 

позитивною ставкою у порівнянні з розробленою системою. 

Комерційні системи, такі як рішення від Cisco, показали точність на рівні 97-

98%, що є порівнянним із результатами, отриманими на ANN, проте вартість 

впровадження та утримання таких систем значно перевищує вартість розробленого 

рішення. 
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Рисунок 5.4 - Порівняння точності виявлення атак: розроблена система та існуючі 

рішення 

Переваги розробленої системи. Відкритість та модифікованість: На відміну 

від комерційних рішень, розроблена система базується на відкритих бібліотеках 

Python та дозволяє легко модифікувати алгоритми та адаптувати систему до 

специфічних потреб операторів. 

Нижча вартість впровадження: Система розроблена на базі відкритого 

програмного забезпечення, що значно зменшує витрати на ліцензування в 

порівнянні з комерційними рішеннями. 

Інтеграція з 5G архітектурою: На відміну від більшості існуючих IDS/IPS 

рішень, система спроектована з урахуванням специфіки архітектури 5G та може 

легко інтегруватися з базовою мережею 5G. 

Адаптивність до нових загроз: Система здатна до наскрізного навчання на 

нових даних, що дозволяє їй автоматично адаптуватися до нових типів атак без 

необхідності оновлення правил вручну. 

Обмеження та напрями покращення 
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Незважаючи на достигнення результати, розроблена система демонструє певні 

обмеження у порівнянні з комерційними рішеннями: 

Залежність від якості даних: Точність системи залежить від якості та повноти 

обучуючого датасету. При обробці даних, що значно відрізняються від даних, на 

яких моделі були навчені, точність класифікації може значно знизитись. 

Обмежені механізми реагування: На відміну від повнофункціональних 

комерційних систем, розроблена система зосереджена на виявленні загроз та не 

включає вбудованих механізмів автоматизованого реагування на інциденти. 

Відсутність інтеграції з SIEM: Поточна версія системи не містить інтеграції з 

системами управління інформацією та подіями безпеки (SIEM), що може виявитися 

необхідним для великих операторів. 

Напрями для подальшого розвитку системи включають інтеграцію з SIEM 

платформами, розширення механізмів реагування на інциденти, впровадження 

гарячого навчання (hot learning) для адаптації моделей до нових даних у режимі 

реального часу та розвиток рекомендацій з міціації загроз. 

 

5.8 Висновки за розділом 5 

 

Ефективність алгоритмів машинного навчання. Проведене тестування трьох 

основних алгоритмів машинного навчання - Random Forest, Artificial Neural 

Networks та k-Nearest Neighbors - продемонструвало їх високу ефективність у задачі 

класифікації мережевого трафіку. Random Forest показав найвищу точність 

класифікації на рівні 99,94%, демонструючи надійність в ідентифікації як 

нормального, так і шкідливого трафіку. ANN та KNN, хоч показали дещо нижчі 

показники точності, характеризуються вищою швидкодією обробки та кращою 

адаптивністю до нових типів атак. 

Інтеграція трьох алгоритмів в єдину систему з механізмом адаптивного 

вибору дозволила збалансувати протилежні вимоги точності та швидкодії, 

забезпечивши оптимальну продуктивність системи в цілому. 
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Адекватність продуктивності. Тестування показало, що розроблена система 

забезпечує достатню пропускну здатність та час обробки для функціонування у 

середовищі мереж 5G. Пропускна здатність на рівні 8000-10000 пакетів на секунду, 

час обробки окремого пакету близько 0,23 мілісекунди та часу виявлення загроз в 

межах 50-200 мілісекунд відповідають вимогам до систем моніторингу сучасних 

мережевих інфраструктур. 

Система демонструє лінійну масштабованість при збільшенні обсягів даних 

та ефективне використання обчислювальних ресурсів, що дозволяє рекомендувати 

її для впровадження у мережах операторів мобільного зв'язку. 

Конкурентоспроможність у порівнянні з існуючими рішеннями. Порівняння 

з комерційними та відкритими рішеннями (Snort, Suricata) показало, що розроблена 

система демонструє порівнянну або вищу точність виявлення атак. Особливо 

важливо, що система досягла цих результатів з використанням адаптивних 

алгоритмів машинного навчання, що дозволяє їй автоматично адаптуватися до 

нових типів атак. 

Система також характеризується значно нижчою вартістю впровадження та 

утримання у порівнянні з комерційними рішеннями, зберігаючи при цьому високий 

рівень точності та продуктивності. 

Переваги комплексного підходу. Найважливішим висновком досліджень є те, 

що комплексна інформаційна система, яка інтегрує множинні алгоритми 

машинного навчання та забезпечує адаптивний вибір оптимального методу аналізу 

залежно від контексту, демонструє суттєво кращі результати порівняно з окремими 

алгоритмами чи традиційними правилами. 

Розроблена система показує, що для ефективного виявлення шкідливого 

трафіку у мережах 5G необхідний не лише вибір правильних алгоритмів 

машинного навчання, але й їх органічна інтеграція в архітектуру системи, що 

враховує специфіку мережевої інфраструктури та вимоги до реального часу 

обробки. 

Перспективи впровадження. Отримані результати дослідження 

демонструють практичну можливість розробленої системи для впровадження у 
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мережах мобільного зв'язку 5G та інших критичних мережевих інфраструктурах. 

Система готова до подальшого тестування в умовах реальної експлуатації та може 

слугувати базою для розробки комерційних рішень у сфері кібербезпеки мереж 

п'ятого покоління. 

Комбінація високої точності виявлення, достатної продуктивності, 

адаптивності до нових загроз та можливості масштабування робить розроблену 

систему привабливим рішенням для операторів мобільного зв'язку, які прагнуть 

забезпечити надійний захист своїх мережевих інфраструктур від сучасних 

кіберзагроз. 
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ЗАГАЛЬНІ ВИСНОВКИ 

 

Результати аналітичної частини дослідження. Проведений аналіз архітектури 

та вразливостей мереж п'ятого покоління підтвердив критичну важливість 

розробки спеціалізованих систем захисту для мобільних мереж нового покоління. 

У першому розділі детально розглядалися основні компоненти архітектури 5G, 

включаючи радіодоступну мережу (RAN), базову мережу (CN) та розподілені 

хмарні ресурси. Особливу увагу було приділено унікальним характеристикам 

мереж 5G, таким як висока щільність мережевих вузлів, використання хмарних 

технологій (NFV, SDN) та підтримка мережевої сегментації (network slicing). 

Аналіз вразливостей мереж 5G показав, що вони суттєво відрізняються від 

вразливостей попередніх поколінь мереж. Децентралізована архітектура на основі 

сервісів, широкомасштабне використання хмарних інфраструктур та скорочення 

кількості мережевих огорож створюють нові вектори атак. Найбільш критичними 

загрозами для мереж 5G визначено: атаки на уповноважених користувачів, атаки 

типу DDoS, вторгнення у базові мережи та експлуатація вразливостей у функціях 

управління мережею. 

У другому розділі було систематизовано методи та інструменти виявлення 

атак та шкідливого трафіку. Розглядались як традиційні підходи на основі сигнатур 

та аномалій, так і сучасні методи на основі гібридних підходів. Проведений огляд 

показав, що єдиний метод виявлення не може забезпечити комплексний захист. Це 

обґрунтувало необхідність розробки інтегрованої інформаційної системи, що 

комбінує множинні методи аналізу. 

Дослідження методів штучного інтелекту для класифікації трафіку охопило 

аналіз п'яти основних алгоритмів машинного навчання: Random Forest, Artificial 

Neural Networks, k-Nearest Neighbors, Support Vector Machines та Convolutional 

Neural Networks. Детальне вивчення їх теоретичних основ продемонструвало, що 

кожен алгоритм найкраще підходить для певних типів задач. 

Результати проектування архітектури системи. На основі аналітичної бази 

було розроблено архітектуру інформаційної системи виявлення шкідливого 
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трафіку, яка інтегрує множинні алгоритми машинного навчання. Архітектура 

системи складається з шести основних модулів: модуль збору даних, модуль 

предобробки, аналітичний модуль, модуль прийняття рішень, модуль реагування 

та модуль управління і моніторингу. 

Ключовим інноваційним рішенням архітектури є механізм адаптивного 

вибору оптимального алгоритму класифікації залежно від типу виявленої загрози 

та умов функціонування мережи. На відміну від традиційних систем, розроблена 

система динамічно вибирає оптимальний метод аналізу на основі характеристик 

мережевого трафіку та статистики попередніх класифікацій. 

Запропонована інтеграційна схема взаємодії системи з інфраструктурою 

мереж 5G враховує специфіку архітектури п'ятого покоління. Система легко 

інтегрується з функціями управління мережею, сервісами мережевої сегментації та 

системами автоматизації (NFV/SDN). 

Результати практичної реалізації та тестування. Розроблено програмний 

прототип інформаційної системи на базі мови Python з використанням сучасних 

бібліотек машинного навчання. Реалізовано всі ключові компоненти архітектури, 

прототип демонструє повну працездатність розробленого рішення. 

Інтегровано три основні алгоритми машинного навчання з досяженням 

високої точності класифікації. На датасеті, що містив понад 1 мільйон зразків 

трафіку, система демонструє: Random Forest - точність 99.94%, Artificial Neural 

Networks - точність 98.82%, k-Nearest Neighbors - точність 98.75%. 

Розроблено веб-інтерфейс управління та моніторингу системи, що забезпечує 

операторам мережи зручний доступ до функцій системи, перегляд статистики та 

управління інцидентами. Інтерфейс реалізовано з використанням сучасних веб-

технологій. 

Оцінка продуктивності та масштабованості. Комплексне тестування 

продуктивності системи підтвердило її придатність для використання в реальних 

мережах 5G. Система забезпечує пропускну здатність 8000-10000 пакетів на 

секунду при однопоточній обробці та до 20000 пакетів на секунду при використанні 
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паралельної обробки. Час обробки одного мережевого пакету становить в 

середньому 0,23 мілісекунди. 

Тестування демонструє лінійну масштабованість системи як в 

горизонтальному, так і у вертикальному напрямках. При збільшенні розміру 

датасету в 10 разів час навчання моделей зростає приблизно в 10 разів, проте 

точність класифікації залишається практично незмінною. 

Система демонструє високу надійність та стійкість до екстремальних умов. 

Довготривале тестування показало стабільну роботу без критичних помилок. 

Система успішно обробляє 99,2% всіх помилкових пакетів. 

Конкурентоспроможність та порівняння з існуючими рішеннями 

Порівняння розробленої системи з комерційними та відкритими рішеннями 

показало, що система демонструє конкурентні показники точності виявлення. 

Random Forest досягає точності 99.94%, що на 7,4% перевищує Snort та на 5,1% 

перевищує Suricata. 

Найбільш суттєвими перевагами розробленої системи є: використання 

адаптивних алгоритмів машинного навчання замість статичних правил; інтеграція 

з архітектурою 5G; модульна архітектура; значно нижча вартість впровадження; 

можливість швидкого навчання на нових даних. 

Наукова новизна дослідження. Запропонована архітектура інформаційної 

системи виявлення шкідливого трафіку, що інтегрує множинні алгоритми 

машинного навчання з механізмом адаптивного вибору оптимального методу 

залежно від типу загрози та умов функціонування мережи. 

Розроблено механізм взаємодії системи з компонентами архітектури 5G, 

включаючи інтеграцію з функціями управління мережею, сервісами мережевої 

сегментації та хмарними ресурсами. 

Проведена комплексна оцінка продуктивності та масштабованості 

розробленої системи в умовах, наближених до реальних мереж 5G. 

Практична значущість результатів. Розроблена інформаційна система 

відповідає потребам операторів мобільного зв'язку та провайдерів послуг 
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інтернету, які мають захищати свої мережні інфраструктури від сучасних 

кіберзагроз. Система готова до впровадження в реальних умовах експлуатації. 

Програмний прототип може слугувати базою для розробки комерційних рішень у 

сфері кібербезпеки мереж п'ятого покоління. На основі розробленої архітектури 

можна створити повнофункціональний продукт, готовий до масового 

впровадження у телекомунікаційній індустрії. 

Результати дослідження можуть бути використані для: підвищення 

ефективності захисту мереж 5G від атак; зменшення часу реагування на інциденти 

безпеки; автоматизації процесів моніторингу та аналізу трафіку; оптимізації витрат 

на впровадження та утримання систем безпеки. 

Висновки та рекомендації. Магістерська робота демонструє, що комплексний 

системний підхід до розробки інформаційних систем виявлення шкідливого 

трафіку забезпечує суттєво кращі результати порівняно з окремими алгоритмами 

або традиційними методами. Інтеграція множинних методів аналізу, архітектурна 

модульність та адаптивність до еволюції загроз є ключовими факторами успіху 

сучасних систем кібербезпеки. 

Комбінація високої точності виявлення (99,94% для оптимізованої моделі), 

достатної продуктивності для режиму реального часу, адаптивності до нових типів 

атак та можливості масштабування робить розроблену систему привабливим 

рішенням для операторів мобільного зв'язку. 

Рекомендується: впровадження системи в тестовому середовищі реального 

оператора мобільного зв'язку; розширення датасету навчання за рахунок даних з 

реальних мереж; розробка механізмів гарячого навчання для адаптації моделей; 

інтеграція з провідними SIEM платформами; розгляд можливості комерціалізації 

рішення. 

Результати дослідження також створюють основу для подальших наукових 

досліджень у сфері застосування штучного інтелекту для кібербезпеки мереж 

п'ятого покоління та наступних поколінь. 
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