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АНОТАЦІЯ 

 

Самков І. С. «Модель прогнозування матеріальних витрат на будівництво з 

використанням нейронних мереж». Кваліфікаційна випускна робота магістра за 

спеціальністю: 126 «Інформаційні системи і технології». – Київський національний 

університет будівництва та архітектури. – Київ, 2025. 

Робота присвячена розробці та дослідженню нейромережевої моделі прогно-

зування матеріальних витрат на будівництво. Основна мета полягає у підвищенні 

точності оцінювання витрат шляхом урахування часової динаміки ринку будівель-

них матеріалів на основі рекурентних нейронних мереж типу LSTM. Запропоно-

вана модель забезпечує зниження похибки прогнозування порівняно з традицій-

ними методами та може використовуватися для підтримки процесів кошторисного 

планування та управління будівельними проєктами. 

Ключові слова: прогнозування витрат, будівельні матеріали, машинне нав-

чання, LSTM, часові ряди, Python, TensorFlow, Keras. 

 

SUMMARY 

 

Samkov I. S. “Construction material cost prediction model using neural networks”. 

Master’s degree final thesis in the specialty: 126 “Information Systems and Technolo-

gies”. – Kyiv National University of Construction and Architecture. – Kyiv, 2025. 

The thesis is devoted tdo the development and investigation of a neural network 

model for predicting material costs in construction. The main goal is to improve forecast-

ing accuracy by considering the time dynamics of construction material prices using re-

current neural networks of the LSTM type. The proposed approach reduces the prediction 

error compared to traditional methods and can be applied to support cost estimation and 

decision-making processes in construction project management. 

Keywords: cost prediction, construction materials, machine learning, LSTM, time 

series, Python, TensorFlow, Keras. 
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ВСТУП 

Актуальність. У сучасних умовах нестабільності економічних ринків і пос-

тійного зростання вартості ресурсів завдання точного прогнозування матеріальних 

витрат на будівництво набуває особливої актуальності. Будівельна галузь є однією 

з ключових складових національної економіки, і ефективність її розвитку значною 

мірою залежить від здатності точно оцінювати майбутні витрати на етапі плану-

вання проєкту. Невірні оцінки вартості матеріалів можуть призвести до переви-

щення бюджету, зриву термінів і фінансових втрат. Традиційні методи кошторис-

ного аналізу, що базуються на регресійних або експертних підходах, часто не вра-

ховують нелінійні зв’язки між численними параметрами проєкту, такими як вид 

матеріалів, регіональні коефіцієнти, терміни виконання робіт та макроекономічні 

фактори. У зв’язку з цим зростає потреба у використанні інтелектуальних систем 

прогнозування, заснованих на технологіях машинного навчання та нейронних ме-

режах, які здатні виявляти приховані закономірності в даних і забезпечувати більш 

точні прогнози матеріальних витрат.  

Останніми роками активний розвиток отримали моделі прогнозування, побу-

довані на базі штучних нейронних мереж - зокрема рекурентних (LSTM) і гібрид-

них архітектур, що поєднують методи глибинного навчання з алгоритмами оптимі-

зації, такими як генетичні алгоритми (GA), рій частинок (PSO) або варіаційна мо-

дова декомпозиція (VMD). Такі рішення довели свою ефективність у задачах про-

гнозування витрат, однак залишаються проблеми, пов’язані з високою чутливістю 

моделей до обсягу навчальних даних, складністю налаштування гіперпараметрів та 

необхідністю інтеграції макроекономічних індикаторів. Додатковим викликом є 

волатильність ринку будівельних матеріалів, що потребує моделей із адаптивною 

структурою, здатних до перенавчання в умовах динамічних змін. Тому актуальним 

є розроблення гнучкої нейромережевої моделі, яка забезпечить стійкість прогнозів 

до зовнішніх коливань і дозволить будівельним компаніям ефективніше планувати 

бюджети. 

Метою роботи є підвищення точності прогнозування матеріальних витрат на 

будівництво шляхом розроблення нейромережевої моделі, яка враховує як технічні 
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параметри проєкту, так і економічні фактори. 

Для досягнення поставленої мети вирішуються такі задачі: 

− аналіз сучасних методів прогнозування вартості будівництва та визначення 

їх переваг і недоліків. 

− розробка нейромережевої моделі прогнозування матеріальних витрат із ви-

користанням рекурентних та гібридних архітектур. 

− розробка програмного забезпечення для перевірки ефективності розробле-

ної моделі. 

Галузь застосування. Розроблена модель та програмне забезпечення можуть 

бути застосовані у сфері управління будівельними проєктами, економічного плану-

вання, кошторисного аналізу та моніторингу витрат у будівельних компаніях, а та-

кож у державних організаціях, що займаються плануванням капітальних інвести-

цій. 

Об’єктом дослідження є процес прогнозування матеріальних витрат на бу-

дівництво. 

Предметом дослідження є нейромережеві моделі та методи прогнозування 

вартості будівельних матеріалів. 

Методи дослідження: методи дослідження базуються на математичній ста-

тистиці та аналізі часових рядів (для виявлення закономірностей змін вартості ма-

теріалів), методах машинного навчання та теорії нейронних мереж (для розроб-

лення моделі прогнозування), а також на методах алгоритмізації, об’єктно-орієн-

тованого проєктування та програмування (для реалізації програмного забезпе-

чення). Основний акцент зроблено на застосуванні рекурентних нейронних мереж 

типу LSTM для моделювання динаміки ринку будівельних матеріалів. 

Наукова новизна отриманих результатів полягає у наступному: 

− отримала подальший розвиток модель прогнозування матеріальних витрат 

на будівництво, що за рахунок використання нейронної мережі типу LSTM забез-

печує зниження похибки прогнозування шляхом урахування часових залежностей 
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змін ринкових цін на будівельні матеріали та адаптації архітектури моделі до спе-

цифіки будівельної галузі. 

Практичне значення отриманих результатів. Розроблене рішення дозво-

ляє підвищити точність оцінювання матеріальних витрат у будівельних проєктах і 

зменшити ризики перевищення бюджету. Запропонована модель може бути вико-

ристана у програмних системах кошторисного планування, а також як аналітичний 

інструмент для оцінки динаміки цін на будівельні матеріали. 

Апробація результатів роботи. Основні положення магістерської роботи 

доповідалися та обговорювалися на конференції: 

− Міжнародна науково-практична конференція «Build master class» (Київ: 

КНУБА, 2025) посилання. 

  

https://drive.google.com/file/d/12_6kQAjVEZcXDjN_OZjIh3njENKgyoRo/view
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РОЗДІЛ 1. АНАЛІЗ ІСНУЮЧИХ РІШЕНЬ У СФЕРІ ПРОГНОЗУ-

ВАННЯ МАТЕРІАЛЬНИХ ВИТРАТ НА БУДІВНИЦТВО 

 

1.1. Аналіз сучасних методів прогнозування витрат на будівництво 

 

У сучасних умовах будівельна галузь характеризується значною динамічні-

стю вартості матеріалів, енергоносіїв та логістичних послуг. Це ускладнює процес 

планування витрат і зумовлює необхідність застосування ефективних моделей про-

гнозування. Основна мета таких моделей – забезпечити обґрунтоване планування 

ресурсів, мінімізувати ризики перевитрат та підвищити економічну ефективність 

реалізації проєктів. 

Існуючі методи прогнозування витрат можна умовно поділити на три основні 

групи: експертні, аналітичні (статистичні) та інтелектуальні (нейромережеві й гіб-

ридні). Експертні методи базуються на досвіді фахівців, які оцінюють майбутні ви-

трати за аналогією з попередніми проєктами. Вони прості у застосуванні, проте ма-

ють низьку точність через суб’єктивність оцінок і неврахування ринкових коли-

вань. Аналітичні методи (регресійні, кореляційні, економетричні) використовують 

статистичну залежність між параметрами проєкту й витратами. Вони забезпечують 

задовільну точність при стабільному ринку, проте мають обмежену здатність мо-

делювати складні нелінійні взаємозв’язки. До недоліків належать також висока чу-

тливість до викидів у даних і низька адаптивність до нових умов. Інтелектуальні 

методи, зокрема штучні нейронні мережі (ANN, LSTM, CNN) та гібридні моделі 

(PSO-BP, SSA-LSTM, VMD-LSTM), дозволяють враховувати нелінійні залежності 

між численними факторами. Вони здатні самостійно навчатися на великих наборах 

даних, виявляти приховані закономірності та адаптуватися до змін ринку. Завдяки 

цьому досягається висока точність прогнозів навіть у динамічних умовах. 

Порівняльний аналіз показує, що традиційні методи забезпечують швидкість 

і простоту розрахунків, однак поступаються інтелектуальним системам за точністю 

та гнучкістю. Нейромережеві підходи, хоча й потребують більших 
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обчислювальних ресурсів, демонструють вищу ефективність у складних багатофа-

кторних моделях. 

Таким чином, розвиток систем прогнозування витрат у будівництві посту-

пово переходить від статистичних моделей до нейромережевих і гібридних підхо-

дів. Це дозволяє підвищити достовірність прогнозів, зменшити ризики фінансових 

втрат і створити основу для розробки інтелектуальних систем підтримки управлін-

ських рішень у сфері будівництва. 

Методи прогнозування будівельних витрат значно відрізняються за принци-

пами роботи, обчислювальною складністю, здатністю враховувати нелінійні залеж-

ності та адаптивністю до ринкових змін. Нижче наведено стислий опис найбільш 

поширених підходів, включених до порівняльного аналізу. 

Лінійна регресія (LR) – це атематична модель, що описує залежність витрат 

від вхідних параметрів за допомогою лінійного рівняння. Переваги: висока інтерп-

ретованість, простота реалізації. Недоліки: низька точність при нелінійних і коре-

льованих факторах. 

Support Vector Regression (SVR) це – машинно-навчальна модель, здатна про-

гнозувати складні залежності шляхом побудови оптимальної регресійної гіперпло-

щини із застосуванням нелінійних ядер. Забезпечує високу точність при малих ви-

бірках, але має низьку інтерпретованість і складну параметризацію. 

Random Forest (RF) – це ансамблевий метод на основі множини дерев рішень, 

що зменшує похибку за рахунок агрегування прогнозів окремих моделей. Переваги: 

стійкість до шуму, висока точність. Недоліки: середня інтерпретованість та помітні 

обчислювальні витрати при великих даних. 

Gradient Boosting (GBDT/XGBoost) – це покращена ансамблева модель, де де-

рева навчання послідовно коригують помилки попередніх. Забезпечує дуже високу 

точність, але є складною для пояснення і також потребує значних ресурсів. 

Штучні нейронні мережі (ANN) – це моделі, що імітують роботу біологічних 

нейронів, здатні навчатися складним нелінійним залежностям між вхідними пара-

метрами. Проста ANN добре прогнозує при середніх даних, однак має низьку інте-

рпретованість і може перенавчатися без регуляризації. 
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Глибинні нейронні мережі (DNN) – це мережі з кількома прихованими ша-

рами, які формують багаторівневі ознаки. Дають високу точність і здатність моде-

лювати складні структури даних, але залежать від великого обсягу тренувального 

набору та високої обчислювальної продуктивності. 

Рекурентні нейронні мережі (LSTM) – це спеціалізовані мережі для аналізу 

часових рядів. Довготривала пам’ять LSTM-комірок дозволяє моделі враховувати 

попередні значення та тренд и, забезпечуючи найкращі показники для прогнозу-

вання матеріальних витрат у часі. 

Гібридні моделі (VMD-LSTM, SSA-LSTM, GA-LSTM) – це поєднання LSTM 

з оптимізаційними алгоритмами або попередньою декомпозицією даних. Такі під-

ходи покращують стійкість до шуму, точність і адаптивність, але роблять модель 

більш складною в реалізації та обчисленнях. 

Мультимодальні моделі (CNN + LSTM + Transformer) – це найсучасніші архі-

тектури, що інтегрують числові, текстові й графічні дані. Забезпечують найвищу 

точність і здатність відображати повну картину формування витрат, однак потребу-

ють великих баз даних і значних ресурсів для навчання.   

Нижче у табл. 1.1 наведена порівняльна оцінка ефективності відомих методів 

прогнозування будівельних витрат. 

Проведений порівняльний аналіз підтверджує тенденцію до зростання ефек-

тивності методів прогнозування будівельних витрат у міру переходу від лінійних 

статистичних моделей до сучасних алгоритмів машинного навчання та глибинних 

нейронних мереж. Лінійна регресія, хоча й забезпечує простоту обчислень і високу 

інтерпретованість, демонструє низьку точність та слабку адаптивність у динаміч-

ному ринковому середовищі. Більш сучасні методи, такі як Random Forest і Gradient 

Boosting, дозволяють враховувати нелінійні зв’язки між параметрами й забезпечу-

ють високу узагальнювальну здатність. 

Найвищих показників досягають нейромережеві архітектури, особливо реку-

рентні моделі (LSTM) та гібридні рішення, оптимізовані з використанням алгорит-

мів еволюційного пошуку чи методів обробки часових рядів. Вони демонструють 
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здатність адаптуватися до нерівномірної ринкової динаміки, забезпечуючи значно 

вищу точність прогнозів навіть при складних багатофакторних залежностях. 

Найвищих показників досягають нейромережеві архітектури, особливо реку-

рентні моделі (LSTM) та гібридні рішення, оптимізовані з використанням алгорит-

мів еволюційного пошуку чи методів обробки часових рядів. Вони демонструють 

здатність адаптуватися до нерівномірної ринкової динаміки, забезпечуючи значно 

вищу точність прогнозів навіть при складних багатофакторних залежностях. 

Таким чином, для прогнозування матеріальних витрат на будівництво най-

більш доцільним є використання LSTM та гібридних нейромережевих архітектур, 

що узгоджується з обраним напрямом дослідження в цій магістерській роботі. 

Таблиця 1.1 

Порівняльна оцінка ефективності відомих методів прогнозування будівельних ви-

трат 

№ Метод прогнозування 

Точ-

ність 

про-

гнозу 

Стійкість 

та узага-

льнува-

льна здат-

ність 

Інте-

рп-

ре-

това-

ність 

Об-

чис-

лю-

ва-

льна 

ефе-

кти-

в-

ність 

Ада-

пти-

в-

ність 

до 

змін 

ри-

нку 

За-

га-

льна 

оці-

нка 

ефе-

кти-

вно-

сті 

1 2 3 4 5 6 7 8 

1 Лінійна регресія (LR) 
Сере-

дня 
Низька 

Ви-

сока 

Ви-

сока 

Ни-

зька 

Се-

ре-

дня 
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Продовження табл. 1.1 

1 2 3 4 5 6 7 8 

2 
Support Vector Regression 

(SVR) 
Висока 

Сере-

дня 

Сере-

дня 

Сере-

дня 

Ни-

зька 

Сере-

дня–

ви-

сока 

3 Random Forest (RF) Висока Висока 
Сере-

дня 

Сере-

дня 

Сере-

дня 

Ви-

сока 

4 
Gradient Boosting 

(GBDT/XGBoost) 

Дуже 

висока 
Висока 

Ни-

зька–

сере-

дня 

Сере-

дня 

Сере-

дня 

Ви-

сока 

5 
Штучна нейронна мережа 

(ANN) 
Висока 

Сере-

дня 

Ни-

зька 

Ни-

зька–

сере-

дня 

Сере-

дня 

Ви-

сока 

6 
Глибинна нейронна мережа 

(DNN) 

Дуже 

висока 
Висока 

Ни-

зька 

Ни-

зька 

Сере-

дня 

Ви-

сока 

7 
Рекурентна нейронна ме-

режа (LSTM) 

Дуже 

висока 

Дуже 

висока 

Ни-

зька 

Сере-

дня 

Ви-

сока 

Дуже 

ви-

сока 

8 

Гібридні моделі (VMD-

LSTM, SSA-LSTM, GA-

LSTM тощо) 

Дуже 

висока 

Дуже 

висока 

Ни-

зька 

Сере-

дня–

ни-

зька 

Дуже 

ви-

сока 

Дуже 

ви-

сока 

9 
Мультимодальні моделі 

(CNN+LSTM+Transformer) 

Най-

вища 
Висока 

Ни-

зька 

Ни-

зька 

Дуже 

ви-

сока 

Дуже 

ви-

сока 

 



17 

 

 

1.2. Оцінка перспектив використання нейромережевих рішень при 

прогнозуванні витрат на будівництво 

 

В умовах сучасної цифровізації будівельної галузі точність прогнозування 

витрат стає ключовим чинником ефективного управління проєктами. Традиційні 

підходи до оцінювання вартості, засновані на нормативно-аналітичних або експер-

тних методах, часто не забезпечують достатньої точності через обмеженість ураху-

вання нелінійних залежностей між численними факторами, що впливають на вар-

тість будівництва. У зв’язку з цим особливу увагу в останні роки привертають ме-

тоди машинного навчання та штучного інтелекту, зокрема нейронні мережі, здатні 

ефективно моделювати складні взаємозв’язки між параметрами проєктів і витра-

тами. 

Застосування нейромережевих підходів у прогнозуванні будівельних витрат 

обумовлене кількома факторами. По-перше, наявність великих обсягів історичних 

даних щодо вартості матеріалів, обсягів робіт і тривалості реалізації проєктів ство-

рює передумови для побудови моделей глибокого навчання. По-друге, сучасні ал-

горитми машинного навчання забезпечують можливість автоматичного відбору оз-

нак, зниження впливу людського фактора та підвищення об’єктивності оцінки. По-

третє, нейронні мережі демонструють здатність адаптуватися до динамічних змін 

ринку будівельних матеріалів, що особливо актуально в умовах нестабільної еко-

номічної ситуації. 

Водночас використання нейромережевих методів у будівництві стикається з 

низкою викликів: необхідністю забезпечення високої якості даних, ризиком пере-

навчання моделей, проблемою пояснюваності результатів та потребою в значних 

обчислювальних ресурсах. Незважаючи на це, останні дослідження свідчать про 

помітне підвищення точності прогнозів за рахунок використання гібридних нейро-

мережевих архітектур, що поєднують класичні алгоритми (регресію, метод опор-

них векторів тощо) з глибинними моделями. 
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Метою цього підрозділу є аналіз сучасних науково-прикладних робіт, у яких 

досліджується застосування нейромережевих методів для прогнозування витрат у 

будівництві. Розглянуті джерела охоплюють останні п’ять років і демонструють рі-

зні підходи до структурування даних, вибору архітектури нейронних мереж, опти-

мізації параметрів навчання та оцінювання точності прогнозу. У кожній роботі буде 

проведено окремий аналіз, що включатиме постановку задачі, опис застосованих 

методів, характеристику даних, основні результати, обмеження та висновки щодо 

можливості адаптації методів до задачі прогнозування матеріальних витрат на бу-

дівництво. 

У статті [1] автори з Shanghai University пропонують гібридний підхід до ран-

нього прогнозування одиничної вартості житлових будівельних проєктів, поєдна-

вши аналіз сірої релевантності (GRA) для попереднього відбору чинників, Lasso-

регресію для регуляризації та відбору ознак і BPNN для власне прогнозування. Така 

послідовна схема дозволяє звузити набір вхідних параметрів і зменшити вплив не-

інформативних ознак на навчання нейромережі. 

Модель тренували на вибірці з 47 житлових проєктів Шанхаю з 17 вхідними 

ознаками (площа, кількість поверхів, клас бетону, тип вікон/дверей тощо). Резуль-

тати показали покращення якості прогнозу: MAE моделі GRA–Lasso–BPNN – 

197,02, RMSE – 234,64, що становить відповідно приблизно на 29 % і 20 % краще 

за порівняльні моделі на базі лише Lasso або чистої BPNN. Автори виокремлюють 

сейсмічну інтенсивність, клас бетону, площу та типи вікон/дверей як ключові фак-

тори впливу на одиничну вартість. 

Серед обмежень відзначено невелику та регіонально обмежену вибірку 

(Шанхай), а також відсутність врахування зовнішніх макроекономічних показни-

ків, що обмежує узагальнення результатів. З огляду на тему магістерської роботи, 

підхід показовий своєю методологією відбору ознак і поетапної інтеграції статис-

тичних і нейромережевих методів, які доцільно адаптувати для прогнозування саме 

матеріальних витрат (включити специфічні ознаки матеріалів, ціни, логістику і ре-

гіональні фактори). 
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У статті [2] дослідники з Hong Kong Polytechnic University запропонували 

вдосконалену модель глибинної нейронної мережі (DNN), орієнтовану на багаток-

ритеріальну оптимізацію точності прогнозу будівельних витрат. Основною метою 

дослідження було розроблення моделі, яка могла б одночасно мінімізувати кілька 

видів похибок (MAE, RMSE) і підвищити стабільність прогнозування при зміні вхі-

дних умов. Автори наголошують, що класичні DNN, хоча й демонструють високу 

точність при аналізі багатовимірних техніко-економічних даних, часто страждають 

від перенавчання, чутливості до вибору гіперпараметрів та нестабільності прогно-

зів на різних вибірках. 

У межах цього дослідження було використано багатошарову DNN із шістьма 

прихованими шарами, побудовану для обробки великої кількості корельованих оз-

нак будівельних проєктів. Архітектура включала шари batch normalization та 

dropout для зменшення перенавчання, а оптимізація здійснювалася за допомогою 

модифікованого алгоритму Adam, який враховував індивідуальні ваги для різних 

типів похибок. Для навчання було сформовано масив із 215 завершених будівель-

них об’єктів у великих містах Китаю та Гонконгу. Вибірка охоплювала понад 30 

характеристик: площу, тип матеріалів, висоту будівлі, конструктивні рішення, ре-

гіональні коефіцієнти, витрати на працю, дані про логістику та тривалість будівни-

цтва. 

Особливо важливим компонентом методології було застосування багатокри-

теріальної функції втрат, яка враховувала як точність прогнозування (MAE, 

RMSE), так і стабільність моделі. Крім того, автори застосували техніку feature 

smoothing – попередню обробку вхідних параметрів шляхом згладжування та усу-

нення аномалій, що дозволило зменшити вплив шуму та покращити узгодженість 

результатів. 

Результати підтвердили ефективність підходу: модель досягла R² = 0,974, а 

середня абсолютна похибка зменшилася на 19 % у порівнянні з класичною DNN. 

Порівняльний аналіз із модельними варіантами SVR, Random Forest та градієнт-

ного бустингу показав, що покращена DNN не лише дала точніші прогнози, але й 

продемонструвала менший розкид результатів під час крос-валідації. Важливо, що 
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автори підкреслюють здатність моделі зберігати стабільність навіть при значних 

варіаціях вхідних параметрів, що є ключовим фактором для практичного викорис-

тання у процесі кошторисного планування. 

Серед недоліків роботи автори визначили високу обчислювальну складність 

та тривалий час навчання, особливо при використанні багатовимірних даних. Крім 

того, модель не включає макроекономічних факторів, які також можуть суттєво 

впливати на загальну вартість будівництва. Незважаючи на ці обмеження, стаття є 

вагомим внеском у розвиток інтелектуальних систем прогнозування. Її цінність по-

лягає у використанні багатокритеріальної оптимізації, що може бути адаптовано в 

магістерській роботі для покращення точності моделювання матеріальних витрат, 

зокрема при врахуванні складної взаємодії кількох технічних та ресурсних показ-

ників. 

У статті [3] дослідники з Університету Цінхуа запропонували гібридний під-

хід до прогнозування будівельних витрат, який поєднує алгоритм рою частинок 

(PSO) та класичну нейронну мережу з поширенням помилки (BP). Метою дослі-

дження було усунути недоліки традиційної BP-мережі, яка часто застрягає в лока-

льних мінімумах і демонструє нестабільність через випадкову ініціалізацію ваг. 

Для розв’язання цієї проблеми PSO використовувався для оптимізації почат-

кових вагових коефіцієнтів та порогів, що дозволило значно підвищити якість нав-

чання BP-мережі. Модель тестували на даних промислових і житлових об’єктів, що 

містили параметри проєктів: площу, поверховість, матеріали, тип конструкції, ре-

гіональні коефіцієнти, тривалість робіт і витрати на ресурси. Після нормалізації да-

них здійснювалося порівняння трьох моделей – базової BP, випадкової BP та опти-

мізованої PSO-BP. 

Результати показали, що гібридна архітектура PSO-BP забезпечила значно 

кращі показники: RMSE зменшився на 23 %, а R² підвищився з 0,89 до 0,95. Це 

підтверджує, що PSO дозволяє ефективніше виявляти нелінійні зв’язки та підвищує 

стабільність моделі навіть при обмеженому обсязі даних. Автори також відзнача-

ють хорошу стійкість моделі до шуму та кореляції між ознаками. 
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Однак модель має певні недоліки – високу обчислювальну складність при 

збільшенні кількості ознак, залежність від параметрів PSO та використання даних 

лише одного регіону, що обмежує узагальнювальну здатність. Незважаючи на це, 

робота демонструє значну цінність, оскільки підтверджує ефективність інтеграції 

класичних нейромереж з еволюційними алгоритмами. Для магістерської теми вона 

є корисною, адже ілюструє, як PSO може підвищити точність прогнозування мате-

ріальних витрат шляхом оптимізації ваг нейромережевої моделі. 

У статті [4] автори з Університету Квінсленда порівняли ефективність двох 

підходів до прогнозування вартості будівництва – методу опорних векторів (SVR) 

і глибокої нейронної мережі (DNN). Метою дослідження було визначення алгори-

тму, який найкраще відображає складні нелінійні взаємозв’язки між технічними, 

матеріальними та регіональними параметрами проєктів. 

У роботі використано дані понад 150 будівельних проєктів комерційного се-

ктору Австралії. Серед вхідних параметрів – площа, кількість поверхів, тип конс-

трукції, матеріали, місце розташування, архітектурний стиль, вартість праці та три-

валість будівництва. Для зменшення кореляції та підвищення узагальнювальної 

здатності моделей застосовано метод головних компонент (PCA). На основі цих оз-

нак побудовано моделі SVR і DNN, які оцінювалися за метриками MAE, RMSE та 

R². 

Результати показали, що DNN забезпечує значно вищу точність: MAE змен-

шилась на 18 %, RMSE – на 21 %, а коефіцієнт детермінації (R²) досяг 0,962. Це 

свідчить, що глибока нейронна мережа краще моделює складні нелінійні залежно-

сті. Водночас SVR продемонстрував стабільність за обмежених даних. Автори за-

пропонували комбінований підхід, де SVR використовується для первинної оцінки, 

а DNN – для уточнення прогнозу, що підвищує ефективність обчислень. 

Основними недоліками є висока обчислювальна складність DNN, потреба в 

потужних обчислювальних ресурсах та ризик перенавчання при недостатній кіль-

кості даних [4]. Попри це, робота підтверджує доцільність використання глибоких 

нейронних мереж для аналізу будівельних витрат. У контексті теми магістерської 

роботи вона демонструє перспективність DNN для прогнозування матеріальних і 
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ресурсних показників, а також потенціал комбінування різних алгоритмів у єдиній 

системі прогнозування. 

У статті [5] автори запропонували підхід до прогнозування цін на будівельні 

матеріали із використанням інтервальних прогнозів, що дозволяє враховувати не-

визначеність ринку та підвищити надійність оцінки витрат. Дослідники підкреслю-

ють, що класичні моделі забезпечують лише точкові прогнози, які є недостатніми 

в умовах високої волатильності ринку будівельних матеріалів. Інтервальний про-

гноз дозволяє оцінити не лише очікуване значення, а й діапазон можливих коли-

вань, що суттєво підвищує якість процесу кошторисного планування. 

Модель, запропонована авторами, поєднує штучну нейронну мережу (ANN) 

з методологією подвійного навчання (dual-training strategy), що дозволило одноча-

сно прогнозувати верхню та нижню межі цін. Для навчання використовувались іс-

торичні часові ряди вартості сталі, цементу, деревини та інших ключових матеріа-

лів, отримані з ринкових джерел за декілька років. Особливу увагу приділено згла-

дженню шуму, нормалізації та перевірці стаціонарності даних – факторів, що сут-

тєво впливають на результати інтервального прогнозування. 

Експериментальні результати показали, що нейромережева інтервальна мо-

дель перевершує класичні статистичні методи, такі як ARIMA та експоненціальне 

згладжування, за точністю та шириною інтервалів. Модель забезпечила менші зна-

чення Pinball Loss і високу точність покриття (coverage probability), що свідчить про 

здатність адекватно оцінювати як центральну тенденцію, так і ризикові сценарії. 

Автори зазначають, що запропонований підхід є перспективним для реальних 

умов, де різкі коливання вартості будівельних матеріалів можуть суттєво вплинути 

на бюджет проєкту. 

Серед обмежень роботи – чутливість до якості вхідних даних та потреба в 

періодичному перенавчанні моделі у разі структурних змін ринку. Також автори 

відзначають, що інтервальний прогноз потребує більшої кількості обчислень, ніж 

точковий. Незважаючи на це, дослідження є важливим внеском у сферу прогнозу-

вання витрат. Для теми магістерської роботи ця стаття є особливо цінною, оскільки 
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дозволяє інтегрувати інтервальні оцінки до прогнозу вартості матеріалів, що підви-

щує надійність системи планування та дозволяє врахувати ризики коливань цін. 

У статті [6] дослідники з Університету штату Колорадо представили інтегро-

вану модель прогнозування вартості будівельних проєктів, яка об’єднує LSTM-ме-

режу та регресійний модуль, що враховує макроекономічні індикатори. Автори від-

значають, що більшість моделей прогнозування будівельних витрат фокусуються 

переважно на технічних параметрах – площі, матеріалах, типі конструкції – і часто 

ігнорують вплив економічної динаміки, що формує кінцеву вартість проєктів. Саме 

тому запропонований підхід орієнтований на поєднання мікро- та макрорівнів да-

них, що дозволяє точніше моделювати реальну ситуацію на ринку. 

Модель включає LSTM-мережу, яка аналізує часові ряди витрат за понад де-

сять років (2010–2020) на прикладі 200 будівельних проєктів різних типів у США. 

Після отримання прогнозів на основі технічних і часових даних, результати допов-

нюються регресійною моделлю, що використовує індекс інфляції, споживчі цінові 

індекси, рівень зайнятості та валютний курс. Така комбінація дозволяє врахувати 

зовнішні економічні фактори, які суттєво впливають на зміну витрат, особливо в 

умовах нестабільності ринку. 

Експериментальні результати показали, що гібридна модель значно перевер-

шує як класичні регресійні підходи, так і «чисту» LSTM. Коефіцієнт детермінації 

(R²) зріс до 0,958, а середня абсолютна похибка (MAE) зменшилась на 12 % порів-

няно з базовими моделями. Найбільш помітним було підвищення стабільності про-

гнозів у кризові періоди, коли макроекономічні індикатори зазнають різких коли-

вань. Автори підкреслюють, що інтеграція зовнішніх економічних факторів дозво-

лила уникнути недооцінки або переоцінки вартості проєктів під час ринкових збу-

рень. 

Попри високу ефективність, робота має певні обмеження. По-перше, модель 

потребує великої кількості якісних даних, що може бути складним завданням у кра-

їнах із недостатньо розвиненою системою статистичного моніторингу. По-друге, 

інтеграція різнорідних джерел інформації ускладнює обробку даних і збільшує об-

числювальні витрати. Крім того, ефективність моделі може зменшуватися при 
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короткострокових прогнозах на рівні окремих об’єктів, де економічні індикатори 

мають менший вплив. Незважаючи на ці обмеження, стаття становить значний ін-

терес для теми магістерської роботи, оскільки демонструє переваги об’єднання те-

хнічних параметрів з економічними факторами. Такий підхід може бути викорис-

таний для підвищення точності прогнозування матеріальних витрат, особливо у не-

стабільних ринкових умовах. 

У статті [7] дослідники Xiong S., Nie C., Lu Y. та Zheng J. представили гібри-

дну модель прогнозування вартості будівельних матеріалів, яка поєднує розкла-

дання сигналу, еволюційний алгоритм оптимізації та рекурентну нейронну мережу 

LSTM. Автори відзначають, що ринок будівельних матеріалів характеризується ви-

сокою волатильністю та шумністю, що може суттєво знижувати точність класич-

них моделей. Тому розроблений підхід спрямований на підвищення стабільності та 

точності прогнозів у складних ринкових умовах. 

На першому етапі використано Variational Mode Decomposition (VMD) для 

розкладання часових рядів цін на кілька внутрішніх мод (IMF), що дозволило відо-

кремити трендову, циклічну та шумову компоненти. Далі застосовано Sparrow 

Search Algorithm (SSA) для оптимізації гіперпараметрів LSTM, зокрема кількості 

нейронів, швидкості навчання та коефіцієнтів регуляризації. Finаlним етапом є на-

вчання моделі LSTM на очищених і структурованих IMF-компонентах. Така трирі-

внева схема забезпечила зменшення впливу шуму та покращення узагальнювальної 

здатності моделі. 

Експерименти, проведені на реальних даних ринку арматури міста Хеньян 

(Китай), показали, що модель VMD-SSA-LSTM значно перевершує базові моделі – 

BPNN, LSTM та навіть VMD-LSTM без оптимізації. Середньоквадратична похибка 

(RMSE) знизилася на 41,22 %, а коефіцієнт детермінації (R²) зріс до 0,965. Таке 

суттєве покращення точності свідчить про ефективність комбінації методів роз-

кладу сигналу та оптимізації у задачах прогнозування матеріальних витрат. Крім 

того, автори зазначають, що модель демонструє стійкість при різних горизонтах 

прогнозування та здатна працювати з матеріалами, ціни на які піддаються різким 

коливанням. 
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Попри високі результати, дослідження має низку обмежень. Модель тестува-

лася лише на одному виді матеріалу та в одному регіоні, що знижує узагальнюва-

ність результатів. Крім того, гібридний алгоритм є обчислювально складним, що 

може бути проблемою при роботі з великими наборами даних або в реальному часі. 

Також потребує оптимізації обсяг пам'яті та часу навчання. Незважаючи на це, 

стаття є важливим внеском у дослідження методів прогнозування матеріальних ви-

трат. У контексті магістерської роботи вона демонструє перспективність об'єд-

нання технологій очищення сигналу, оптимізації та рекурентних нейронних мереж 

для створення високоточних моделей прогнозування цін на будівельні матеріали. 

У статті [8] дослідники з Університету Нового Південного Уельсу запропо-

нували використання сучасних трансформерних архітектур для прогнозування ва-

ртості будівельних проєктів на основі багатовимірних часових рядів та техніко-еко-

номічних параметрів. Автори зазначають, що традиційні моделі – лінійна регресія, 

XGBoost або LSTM – мають обмежену здатність ефективно обробляти довгостро-

кові залежності та складні нелінійні взаємозв’язки в даних, тоді як Transformer за-

безпечує кращу увагу до релевантних ознак завдяки механізму self-attention. 

Модель, запропонована в дослідженні, складається з кількох енкодерних бло-

ків Transformer, які отримують на вхід послідовності, що описують історичну вар-

тість матеріалів, обсяги робіт, календарні фази будівництва, характеристики проє-

кту та регіональні економічні показники. Для покращення обробки часових рядів 

застосовано модифіковану позиційну кодування (temporal positional embedding), що 

дозволяє моделі краще виявляти сезонні та періодичні закономірності. Додатково 

використано шар Dropout і механізм багатоголової уваги для зменшення перена-

вчання й підвищення стабільності навчання. 

Експерименти проводилися на вибірці з 280 завершених будівельних проєк-

тів, що включали житлові, інфраструктурні та промислові об’єкти. Для оптимізації 

було використано алгоритм AdamW, а валідацію здійснено методом k-fold (k = 5). 

Отримані результати засвідчили, що Transformer-модель перевершує LSTM і 

XGBoost на 12–18 % за MAE та RMSE. Коефіцієнт детермінації (R²) досяг 0,974, 

що свідчить про високий ступінь відповідності прогнозованих значень фактичним 
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даним. Найбільш впливовими ознаками Transformer визначив (через attention 

weights): площу будівництва, вартість матеріалів, індекс інфляції та тривалість ви-

конання проєкту. 

Водночас дослідження має певні обмеження: по-перше, модель є обчислюва-

льно складною та вимагає значної кількості даних для якісного навчання. По-друге, 

підготовка вхідних багатовимірних часових рядів потребує ретельного поперед-

нього опрацювання, включно з нормалізацією, обробкою пропусків та узгоджен-

ням часових інтервалів. По-третє, інтерпретованість трансформерних моделей за-

лишається складною, попри механізм уваги. Незважаючи на ці обмеження, робота 

демонструє ефективність використання Transformer у складних задачах прогнозу-

вання витрат і підтверджує потенціал цієї архітектури для будівельної галузі. У 

контексті магістерської роботи такі моделі можуть бути застосовані для прогнозу-

вання вартості матеріалів з урахуванням довгострокових тенденцій і сезонності, що 

є важливою перевагою. 

У статті [9], опублікованій у журналі Expert Systems with Applications, дослід-

ники з Політехнічного університету Гонконгу запропонували гібридну архітек-

туру, що поєднує згорткові нейронні мережі (CNN) та довготривалі рекурентні ме-

режі (LSTM) для підвищення точності прогнозування вартості будівельних проєк-

тів. Метою дослідження було створення моделі, здатної одночасно враховувати ло-

кальні закономірності в даних (за рахунок CNN) та довгострокові часові залежності 

(через LSTM), що є критично важливим у задачах оцінки витрат. 

Автори підкреслюють, що традиційні регресійні методи і навіть окремі 

LSTM-моделі часто не здатні коректно відображати складні багатовимірні залеж-

ності між техніко-економічними параметрами, змінами цін на матеріали та часо-

вими факторами. Тому CNN-LSTM архітектура була обрана як більш універсальна: 

CNN-шари автоматично виокремлюють ключові патерни у структурованих даних, 

а LSTM-блоки моделюють динаміку змін витрат у часі. 

Модель тестували на наборі даних із 150 реальних будівельних проєктів, що 

містили показники вартості матеріалів, площі будівництва, тривалості циклів, регі-

ональні коефіцієнти, обсяги робіт та індекси ринку. Дані нормалізували, а вибірку 
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поділили у співвідношенні 75:25. У CNN-блоці використовували 1D-згортки, після 

яких розміщувалися LSTM-шари з 64 та 128 нейронами. Навчання виконувалося із 

застосуванням Adam і регуляризації Dropout для уникнення перенавчання. 

Експерименти показали, що гібридна модель забезпечила кращі результати, 

ніж окремі CNN, LSTM та XGBoost. Середня абсолютна відносна похибка (MAPE) 

зменшилася до 6,2 %, а коефіцієнт детермінації (R²) зріс до 0,968. Аналіз впливу 

ознак засвідчив, що CNN-LSTM найбільше орієнтується на цінові індекси, обсяг 

робіт та площу будівництва. 

Недоліками підходу є висока обчислювальна складність та необхідність ве-

ликих навчальних вибірок. Крім того, інтерпретованість результатів залишається 

обмеженою. Незважаючи на ці фактори, робота демонструє практичну цінність гі-

бридних моделей, які поєднують сильні сторони різних типів нейронних мереж. У 

контексті магістерської роботи така архітектура може бути адаптована для більш 

точного прогнозування матеріальних витрат завдяки одночасному виявленню ло-

кальних і часових закономірностей. 

У статті [10], виконаній дослідниками Сінгапурського національного універ-

ситету, запропоновано комплексний підхід до оцінювання вартості будівництва на 

основі мультимодальних даних – числових, текстових і візуальних. Метою роботи 

було подолання обмежень традиційних моделей, які працюють лише з числовими 

показниками й не враховують важливу інформацію, закладену в текстовій докуме-

нтації та графічних матеріалах (BIM-кресленнях, планах приміщень, ескізах). 

Архітектура моделі поєднувала три компоненти: 

− CNN-модуль для аналізу графічних даних (креслення, схеми БІМ); 

− LSTM-блок для обробки часових рядів вартості та техніко-економічних по-

казників; 

− Transformer-модуль для розпізнавання структурної інформації в текстових 

описах, технічних вимогах та кошторисах. 

Отримані векторні представлення об’єднувалися через механізм мультимо-

дального злиття, що дозволяло моделі одночасно враховувати просторові, часові й 

описові особливості кожного проєкту. Для навчання використано базу з понад 300 
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будівельних об’єктів різного призначення. Оптимізацію проводили за допомогою 

AdamW, а для регуляризації застосовували Dropout та норми L2. 

За результатами експериментів мультимодальна глибока модель істотно ви-

передила підходи, що використовують лише табличні дані. Значення коефіцієнта 

детермінації (R²) зросло до 0,981, а RMSE зменшилася на 25 % порівняно з одно-

модальними моделями. Автори зазначають, що інтеграція різних типів даних до-

зволяє краще враховувати контекст проєкту – складність конструкцій, структуру 

витрат, особливості матеріалів і регіональні фактори. 

Попри високу точність, модель має низку обмежень: значні обчислювальні 

витрати, потребу в великій кількості якісно розмічених даних і складність у підго-

товці мультимодальних наборів. Проте дослідники наголошують, що такі системи 

здатні радикально підвищити точність прогнозування шляхом комплексного ана-

лізу даних. 

Основний критерій, який використовується у всіх дослідженнях. Ефектив-

ність моделі визначається значеннями таких метрик, як MAE, RMSE, R² або MAPE. 

Усі розглянуті роботи демонструють, що використання гібридних або глибоких 

нейронних мереж LSTM, DNN, CNN  значно підвищує точність прогнозу порівняно 

з класичними методами (регресією, SVR тощо). 

Ефективне рішення має зберігати точність на нових, не бачених даних, а та-

кож бути стійким до шумів і коливань у вибірці. У більшості досліджень для підви-

щення стійкості використовуються гібридні архітектури (наприклад, VMD-SSA-

LSTM , GA-LSTM) або регуляризаційні методи (Lasso, PCA. 

Важливо, щоб модель не лише давала точний прогноз, а й дозволяла ідентифіку-

вати фактори, що найбільше впливають на витрати. Цей критерій активно викори-

стовувався в роботах [1, 5, 9], де аналізували вагові коефіцієнти, вплив макроеко-

номічних показників і важливість ознак. Інтерпретованість підвищує довіру до мо-

делі та полегшує її практичне застосування. 

Для практичного впровадження модель має бути оптимальною з точки зору 

ресурсів і часу навчання. Дослідження [2, 3, 10] підкреслюють, що архітектури 

DNN, LSTM, CNN потребують обладнання з великою обчислювальною здатністю  
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та великих обсягів даних, тому важливою характеристикою ефективності є баланс 

між точністю та обчислювальними витратами. 

Ринок будівельних матеріалів відзначається високою волатильністю (показ-

ник, який характеризує коливання часових рядів), тому ефективна модель повинна 

мати адаптивний характер – тобто можливість оновлюватися при надходженні но-

вих даних або змінах економічних факторів. Це підкреслюється в роботах [5, 6, 8], 

де автори включають макроекономічні показники, динаміку інфляції, валютні коли-

вання тощо, що робить моделі гнучкішими та придатними для практичного прогно-

зування. 

 

1.3. Формалізація задачі та постановка задач дослідження 

 

Незважаючи на значний прогрес у сфері прогнозування вартості будівництва, 

більшість існуючих моделей мають низку обмежень, пов’язаних із недостатньою 

точністю, низькою адаптивністю до змін ринку та обмеженою здатністю працю-

вати з великими різнорідними наборами даних. Класичні підходи, такі як лінійна 

регресія або ансамблеві методи, продемонстрували високу інтерпретованість і ста-

більність, однак поступаються сучасним нейронним моделям у гнучкості та мож-

ливості виявлення прихованих нелінійних закономірностей. У цьому контексті до-

цільно розглянути сучасні нейромережеві рішення, які потенційно дозволяють усу-

нути зазначені недоліки та підвищити ефективність прогнозування матеріальних 

витрат. 

Одним із перспективних напрямів є використання рекурентних нейронних 

мереж (RNN), зокрема їхніх модифікацій – LSTM (Long Short-Term Memory) та 

GRU (Gated Recurrent Unit). Ці архітектури спеціально розроблені для роботи з ча-

совими рядами, що робить їх ефективними при прогнозуванні цін на будівельні ма-

теріали, які мають виражену часову залежність. Мережі типу LSTM здатні за-

пам’ятовувати довгострокові залежності у даних, зменшуючи проблему затухання 

градієнта, властиву звичайним RNN. Це забезпечує більш точні прогнози навіть за 

умов коливань ринку, сезонних змін та впливу макроекономічних факторів. Окрім 
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того, LSTM-моделі можуть бути інтегровані з оптимізаційними алгоритмами (на-

приклад, Genetic Algorithm, Particle Swarm Optimization), що дозволяє автоматично 

підбирати гіперпараметри та покращувати точність без суттєвого збільшення обчи-

слювальної складності. 

Ще одним важливим напрямом розвитку є створення гібридних нейронних 

моделей, у яких поєднуються декілька типів мереж або алгоритмів попередньої об-

робки даних. Прикладом є комбінації VMD-LSTM або SSA-LSTM, де перед обро-

бкою часові ряди проходять фазу розкладу на компоненти з різною частотною стру-

ктурою. Це дозволяє виділити основні тренди, циклічні коливання та шумові сиг-

нали, що підвищує стійкість моделі до нестабільних ринкових умов. Такі гібридні 

рішення демонструють вищу узагальнювальну здатність і краще справляються з 

задачами короткострокового прогнозування. Вони також зменшують ризик пере-

навчання, оскільки кожен модуль системи виконує специфічну функцію – фільтра-

цію, оптимізацію чи прогнозування. 

Серед сучасних тенденцій у нейромережевому моделюванні варто виокре-

мити також мультимодальні архітектури, що поєднують різні типи даних – числові, 

текстові, графічні та просторові. У таких системах використовується комбінація 

згорткових мереж (CNN) для обробки зображень (наприклад, креслень або фрагме-

нтів BIM-моделей), рекурентних мереж (LSTM/GRU) для аналізу часових рядів ви-

трат і трансформерних моделей (Transformers) для обробки текстових описів із ко-

шторисів або технічних звітів. Об’єднання різнорідних джерел даних дозволяє 

створювати глибше представлення ознак, що суттєво підвищує точність прогнозів. 

Однак такі моделі мають високу обчислювальну складність і потребують потужних 

апаратних ресурсів, тому їхня практична реалізація поки що обмежена. 

Важливу роль у підвищенні ефективності нейронних моделей відіграє засто-

сування механізмів уваги (Attention Mechanisms). Вони дозволяють моделі автома-

тично визначати, які частини вхідних даних є найважливішими для прийняття про-

гнозного рішення. У контексті будівельної галузі це означає, що система може са-

мостійно виявляти впливові чинники, наприклад, зміни у цінах на окремі матері-

али, інфляційні показники чи регіональні характеристики ринку. Включення 
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механізмів уваги у нейронну архітектуру не лише підвищує точність, але й сприяє 

частковій інтерпретованості результатів, що є важливим з точки зору прийняття 

управлінських рішень. 

Ще одним напрямом удосконалення нейромережевих систем є впровадження 

адаптивного та оновлюваного навчання (online learning). Такий підхід передбачає, 

що модель може автоматично коригувати свої параметри в режимі реального часу 

у відповідь на появу нових даних або зміну ринкової кон’юнктури. Це особливо 

актуально для будівельної сфери, де ціни на матеріали можуть змінюватися щоти-

жня під впливом логістичних, політичних чи валютних факторів. Адаптивні моделі 

дозволяють мінімізувати похибку прогнозу без необхідності повного перенавчання 

нейромережі, що робить їх практично застосовними у комерційних аналітичних си-

стемах. 

Окремо слід відзначити тенденцію до використання нейронних архітектур із 

пояснюваними результатами (Explainable AI, XAI). Одним із недоліків класичних 

нейромереж є «ефект чорної скриньки» – складність інтерпретації внутрішніх ме-

ханізмів прийняття рішень. У сучасних дослідженнях розробляються методи, які 

дозволяють пояснювати вплив кожної змінної на кінцевий прогноз – наприклад, 

методи SHAP або LIME. Їхня інтеграція у моделі прогнозування витрат допомагає 

інженерам і аналітикам краще розуміти, чому прогноз має певне значення, і відпо-

відно приймати обґрунтовані управлінські рішення. 

Отже, сучасні нейромережеві рішення демонструють високий потенціал у по-

доланні обмежень, виявлених у попередніх дослідженнях. Їхня здатність моделю-

вати складні нелінійні зв’язки, працювати з різними типами даних і адаптуватися 

до динамічних умов ринку робить їх особливо придатними для задач прогнозу-

вання матеріальних витрат у будівництві. Найефективнішими напрямами розвитку 

вважаються гібридні моделі на базі LSTM, використання механізмів уваги, мульти-

модальні архітектури та впровадження адаптивного навчання. Подальші дослі-

дження мають бути спрямовані на оптимізацію цих систем для підвищення їхньої 

обчислювальної ефективності та розширення можливостей практичного застосу-

вання у вітчизняних умовах будівельного ринку. 
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1.4. Висновки до розділу 1 

 

Даний розділ присвячений вирішенню наукової задачі аналізу рішень в обла-

сті прогнозування матеріальних витрат на будівництво з використанням сучасних 

методів штучного інтелекту. В результаті проведених досліджень: 

− Показано, що науково-практична задача прогнозування матеріальних ви-

трат у будівництві зводиться до побудови моделі прогнозування матеріальних ви-

трат на будівництво з використанням нейронних мереж. Визначено умови постано-

вки даної задачі та характеристики процесів формування витрат, що мають бути 

враховані в процесі розробки ефективної нейронної моделі прогнозування вартості 

будівельних матеріалів. 

− Обґрунтовано, що технологіям традиційного статистичного та регресій-

ного аналізу, які засновані на лінійних залежностях і фіксованих параметрах, при-

таманні недоліки, пов’язані із недостатньою точністю, низькою адаптивністю та 

неможливістю обробки великих різнорідних наборів даних. Показано можливість 

вдосконалення означених технологій за рахунок застосування нейронних мереж, 

які забезпечують моделювання нелінійних закономірностей, підвищену точність 

прогнозу та адаптацію до динамічних ринкових умов. 

− Визначена перспективність розробки нейромережевих засобів та встанов-

лена можливість підвищення їх ефективності за рахунок використання глибоких та 

гібридних архітектур (зокрема LSTM, CNN, DNN), визначення вхідних параметрів 

нейромережевої моделі і розробки базової нейромережевої моделі. Це призводить 

до необхідності вирішення таких задач дослідження: 

1. Формалізації задачі прогнозування матеріальних витрат на будівництво. 

2. Розробки нейромережевої моделі прогнозування матеріальних витрат на 

будівництво. 

3. Розробки та дослідження системи прогнозування матеріальних витрат на 

будівництво. 
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РОЗДІЛ 2. НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ПРОГНОЗУВАННЯ МАТЕРІ-

АЛЬНИХ ВИТРАТ НА БУДІВНИЦТВО 

 

2.1. Процедура визначення вхідних параметрів нейромережевої моделі 

 

Ефективність нейромережевої моделі прогнозування матеріальних витрат на 

будівництво значною мірою залежить від коректності формування її вхідного про-

стору. Вхідні параметри є первинним джерелом інформації, на основі якої відбува-

ється навчання моделі, формування закономірностей, узагальнення та прогнозу-

вання. Неправильно підібрані або недостатньо інформативні характеристики приз-

водять до значного зниження точності прогнозу, перенавчання або нестабільності 

моделі під час роботи з новими даними. Тому необхідним етапом розробки системи 

є чітке визначення набору показників, які найбільш повно відображають процеси, 

що формують вартість будівельних матеріалів. 

Процедура формування вхідних даних ґрунтується на принципах системного 

аналізу та комбінує економічні, технологічні та ринкові аспекти. Матеріальні ви-

трати в будівництві є багатофакторною величиною, на яку впливає широкий спектр 

змінних: від технічних характеристик об’єкта до макроекономічної ситуації в кра-

їні. Тому при побудові моделі важливо одночасно враховувати внутрішні та зовні-

шні фактори, а також забезпечити їх коректне представлення у вигляді числових 

послідовностей, придатних для навчання нейронної мережі. 

З огляду на це, формування вхідних параметрів передбачає виконання кіль-

кох ключових кроків: 

1. Визначення джерел даних, що характеризують матеріальні витрати на різ-

них рівнях абстракції – від цін окремих матеріалів до загальних економічних інди-

каторів. 

2. Виділення найбільш значущих факторів, здатних впливати на цінову дина-

міку, шляхом аналізу попередніх досліджень, галузевих норм та експертних оцінок. 

3. Формування структури параметрів відповідно до вимог нейромережевої 

моделі (LSTM або гібридної архітектури), яка працює з часовими рядами. 
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4. Перевірка інформативності та усунення надлишковості даних через по-

передній статистичний аналіз. 

5. Приведення параметрів до стандартизованого формату, який забезпечує 

стабільне навчання моделі. 

Окремої уваги потребує те, що прогнозування матеріальних витрат є задачею, 

у якій значну роль відіграє часова залежність. Коливання цін на матеріали не є ви-

падковими – вони залежать від сезонності, стану економічного середовища, дина-

міки попиту та пропозиції. Такі залежності складно формалізувати традиційними 

методами, тому використання моделей типу LSTM, здатних запам’ятовувати три-

валі часові залежності, є найбільш доцільним. Водночас якість роботи LSTM прямо 

пов’язана з коректним упорядкуванням та структуруванням вхідної послідовності, 

що визначає важливість етапу попереднього аналізу параметрів. 

Ще одним важливим аспектом є розширення набору вхідних параметрів за 

рахунок поєднання мікрорівневих (технічних) та макрорівневих (економічних) ха-

рактеристик. Попередній аналіз наукових робіт (розділ 1.2) показав, що точність 

моделей зростає, коли до технічних параметрів додаються індикатори загальноеко-

номічної ситуації, такі як інфляція, індекси будівельної активності, валютні коли-

вання тощо. Таким чином, формування вхідного вектору має бути комплексним і 

багаторівневим. 

На практиці процес визначення вхідних параметрів включає аналіз доступно-

сті даних, їх повноти та можливості подальшого використання. Для кожного типу 

параметрів формується окрема група, які згодом об’єднуються у єдиний вектор оз-

нак, що подається на вхід нейронної мережі. Важливо забезпечити, щоб кожен па-

раметр був вимірюваним, числовим та піддавався нормалізації, оскільки це суттєво 

впливає на швидкість і стабільність навчання нейромережевої моделі. 

Процес визначення вхідних параметрів нейромережевої моделі повинен спи-

ратися на аналіз факторів, які мають реальний вплив на формування матеріальних 

витрат у будівництві. Матеріальні витрати є складною економіко-технічною кате-

горією, на яку впливають як властивості матеріалів та технологічні параметри 

об’єкта, так і ринкові, макроекономічні та інституційні чинники. Правильне 
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врахування цих факторів є критичним, оскільки саме вони визначають структуру 

вхідного вектора даних, а отже – й потенціал нейромережевої моделі до прогнозу-

вання. 

Узагальнено всі фактори, що впливають на вартість будівельних матеріалів, 

можна поділити на три логічні групи: 

1. Технічні параметри проєкту. 

2. Ринкові та економічні показники. 

3. Зовнішні та інституційні фактори. 

Кожна з цих груп містить набір показників, які формують структуру витрат і 

повинні бути відображені у вхідних даних нейромережі. 

Технічні параметри є базовими характеристиками, що визначають обсяг та 

тип матеріалів, необхідних для будівництва. До цієї групи належать: 

− Площа забудови та площа конструктивних елементів. Чим більша площа 

об’єкта, тим більша кількість матеріалів використовується. Це один з ключових фа-

кторів, який завжди має високу кореляцію з вартістю матеріалів. 

− Поверховість, конструктивна складність та тип будівлі. Житлові, промис-

лові або комерційні будівлі мають різну інтенсивність використання бетону, сталі, 

ізоляційних та оздоблювальних матеріалів. 

− Тип конструктивних рішень. Наприклад, монолітний каркас потребує бі-

льше цементу та арматури, тоді як збірні конструкції – більше металевих і заводсь-

ких елементів. 

− Специфікаційні характеристики матеріалів. Марка бетону, клас арматури, 

якість оздоблювальних матеріалів тощо впливають на кінцеву ціну. 

− Логістичні та технологічні параметри. Вартість транспортування матеріа-

лів та складність монтажно-будівельних процесів безпосередньо впливають на кі-

нцеву собівартість. 

Ці параметри зазвичай доступні в технічній та кошторисній документації 

проєкту, тому характеризуються високою достовірністю. У нейромережевій моделі 

вони представлені у вигляді числових ознак, які можуть бути організовані у вигляді 

статичних або псевдочасових послідовностей. 
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Будівельні матеріали є товаром, ціни на який формуються на ринку. Тому ва-

жливою складовою вхідних даних є економічні індикатори, що відображають рин-

кову динаміку та макроекономічну ситуацію. До таких факторів належать: 

− Індекс інфляції. Прямо впливає на собівартість матеріалів, оскільки біль-

шість із них є енергоємними. 

− Валютний курс. Значна частка матеріалів або їх компонентів імпортується, 

тому коливання валют впливають на кінцеву ціну. 

− Індекси будівельної активності. Високий попит призводить до підвищення 

цін на цемент, сталь, щебінь та інші ресурси. 

− Індекс цін виробників (PPI) та індекс споживчих цін (CPI). Відображають 

загальну економічну ситуацію та є хорошими індикаторами тенденцій. 

− Вартість енергоносіїв. Виробництво більшості матеріалів напряму зале-

жить від вартості газу, електроенергії, пального. 

− Динаміка вартості будівельних матеріалів за історичними даними. 

Це ключовий параметр для задачі прогнозування, на якому базується часовий 

ряд. 

Усі ці змінні є критично важливими саме для моделей типу LSTM, оскільки 

вони утворюють багатовимірну часову послідовність, яку мережа аналізує, виявля-

ючи тренди, аномалії, сезонність та довгострокові залежності. 

Окрім технічних та економічних параметрів, варто враховувати групу факто-

рів, що знаходяться поза межами конкретного проєкту, але все ж значно впливають 

на динаміку цін: 

− Сезонність будівництва. Зимове зниження активності та літній пік попиту 

формують коливання на ринку матеріалів. 

− Регуляторні та нормативні зміни. Нові стандарти або обмеження можуть 

підвищувати ціну матеріалів. 

− Географічне розташування. Регіональні особливості логістики, вартість 

доставки та доступність ресурсів формують різну структуру витрат у різних обла-

стях. 



38 

 

− Глобальні ринкові фактори. Ціни на сталь, цемент та інші ресурси часто 

формуються на світових біржах (наприклад, LME – London Metal Exchange). 

− Форс-мажорні події. Війни, пандемії, перебої в поставках можуть різко змі-

нювати цінову ситуацію. 

Ця група параметрів зазвичай має допоміжний характер, але дослідження [1–

10] показали, що врахування макроекономічних і зовнішніх змінних значно покра-

щує точність прогнозування, зменшуючи ризики помилок під час нестабільних ри-

нкових умов. 

Після визначення переліку факторів, що впливають на матеріальні витрати, 

наступним критичним етапом є формалізація цих параметрів, тобто їх перетво-

рення у формат, придатний для подачі на вхід нейромережевої моделі. Це передба-

чає декілька процедур: очищення даних, агрегування, нормалізацію, усунення про-

пусків, а також структурування часового ряду відповідно до вимог LSTM або гіб-

ридної нейронної архітектури. Кожний з цих етапів є необхідним, оскільки якість 

даних прямо впливає на збіжність моделі, стабільність її навчання та кінцеву точ-

ність прогнозування. 

Первинні дані про будівельні матеріали та економічні показники часто міс-

тять помилки, пропуски або шумові компоненти. Тому перед побудовою моделі 

необхідно виконати їх попереднє очищення. До основних методів очищення нале-

жать: 

1. Виявлення та усунення пропусків (Missing Values). Пропуски можуть ви-

никати через нерегулярне оновлення цін або відсутність офіційної статистики за 

певні місяці. Для їх усунення застосовуються такі методи: 

− інтерполяція (лінійна, сплайн-інтерполяція); 

− заповнення середніми або медіанними значеннями; 

− використання моделей короткотермінового прогнозування для реконстру-

кції значень. 

2. Усунення аномалій і шуму. Дані ринку матеріалів можуть містити значні 

короткострокові коливання, що не відображають реальної тенденції. Для їх згла-

джування застосовуються: 
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− ковзні середні; 

− методи фільтрації (Hampel, Savitzky–Golay); 

− методи розкладу часових рядів (для VMD, EMD, STL). 

За потреби в моделі можуть бути застосовані й складніші методи очищення, 

такі як Variational Mode Decomposition (VMD), який був успішно використаний у 

роботі [7]. 

3. Уніфікація форматів даних. Частина параметрів може мати різні одиниці 

вимірювання, різні часові інтервали або представлятися в різних форматах (напри-

клад, текстові економічні звіти). Перед навчанням усі дані мають бути приведені 

до єдиної частоти – найчастіше місячної. 

Окрім числових показників, у реальних даних можуть бути присутні: 

− тип будівлі, 

− тип матеріалу, 

− регіон будівництва, 

− категорія конструкції. 

Оскільки нейронна мережа працює лише з числовими даними, такі ознаки 

потрібно закодувати. Використовуються такі методи: 

− One-Hot Encoding – для невеликих категоріальних ознак. 

− Ordinal Encoding – для впорядкованих ознак (наприклад, класифікація ма-

теріалу за міцністю). 

− Embedding-кодування – для складних категорій під час використання гіб-

ридних або мультимодальних моделей. 

Варто зазначити, що для моделі, де основну роль відіграють часові ряди цін, 

категоріальні ознаки використовуються переважно як допоміжні. 

Моделі LSTM та гібридні архітектури працюють із послідовностями даних, 

тому всі вхідні параметри повинні бути представлені як: 

1. Одновимірні часові ряди, якщо це окрема економічна змінна (інфляція, 

курс валют, індекс теперішніх цін). 



40 

 

2. Багатовимірні часові ряди, якщо на кожному кроці часу визначаються де-

сятки характеристик (наприклад, ціни на групу матеріалів + макроекономічні інди-

катори). 

Формально набір вхідних даних для LSTM подається як тензор (2.1): 

 

 𝑋 ∈ ℝ(𝑁,𝑇,𝑑), (2.1) 

 

де 𝑁 – кількість вибірок (вікон); 

𝑇 – довжина часової послідовності (вікно); 

𝑑 – кількість параметрів (розмірність ознаки). 

Таким чином, для кожного моменту часу модель отримує вектор ознак, а не 

одну змінну. 

Для задачі прогнозування матеріальних витрат вікно часового ряду зазвичай 

вибирається в межах 6–24 місяців, що дозволяє моделі виявляти як короткостро-

кові, так і довгострокові тенденції. 

Усі відомі дослідження підкреслюють, що нормалізація даних є критично ва-

жливою для стабільного навчання нейронної мережі. Різні параметри можуть мати 

різні масштаби (ціна цементу – сотні гривень, інфляція – відсотки), тому без нор-

малізації модель буде неправильно інтерпретувати важливість ознак. 

Найпоширеніші методи нормалізації: 

1. Min-Max Scaling (у межах [0, 1]):  

 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, (2.2) 

 

2. Standard Scaling (z-нормалізація): 

 

 𝑧 =
𝑥−𝜇

𝜎
, (2.3) 

 

де 𝑥 – значення параметра; 
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𝜇 – середнє значення вибірки; 

𝜎 – стандартне відхилення. 

Для часових рядів найчастіше рекомендується Min-Max, оскільки він добре 

працює для LSTM і не змінює структуру трендів. 

Багато параметрів можуть бути високо корельовані. Наприклад: 

− інфляція і PPI; 

− ціна бетону та ціна цементу; 

− обсяг будівельно-монтажних робіт і індекс будівельної активності. 

Надлишковість ознак погіршує здатність моделі до узагальнення та збільшує 

час навчання. 

Тому перед формуванням фінального набору параметрів застосовуються: 

− аналіз кореляційної матриці; 

− метод головних компонент (PCA); 

− алгоритмічний аналіз важливості ознак (Random Forest, Gradient Boosting). 

У результаті вибирається оптимальний набір ознак, які найбільше впливають 

на динаміку матеріальних витрат. 

Після визначення груп факторів, очищення даних та їх формалізації, наступ-

ним етапом є побудова узгодженої структури вхідного простору, яка буде подава-

тися на вхід нейромережевої моделі прогнозування. Оскільки у цій роботі викори-

стовується архітектура LSTM та її гібридні модифікації, структура вхідних даних 

повинна відповідати принципам роботи рекурентних нейронних мереж та забезпе-

чувати чітке представлення часової динаміки. 

Загалом вхідний простір формується у вигляді багатовимірного тензора, де 

кожний рядок відображає стан системи в певний момент часу, а кожний стовпець 

– значення окремого параметра. Такий формат дозволяє моделі обробляти послідо-

вності та виявляти як локальні, так і глобальні патерни змін. 

Типова структура вхідного вектора для задачі прогнозування матеріальних 

витрат може включати такі групи параметрів: 

1. Цінові показники (основні): 

− ціна цементу; 
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− ціна арматури (сталі); 

− ціна піску та щебеню; 

− ціна опалубних матеріалів; 

− індекс вартості будівництва (CCI). 

2. Технічні параметри: 

− обсяг будівництва (м² або м³); 

− складність конструктивних рішень; 

− тип будівлі (житлова, промислова, комерційна). 

3. Економічні показники:  

− інфляція; 

− валютний курс; 

− індекс споживчих цін (CPI); 

− індекс промислових цін (PPI); 

− вартість енергоносіїв. 

4. Сезонно-регіональні параметри: 

− сезон будівництва (квартал або місяць); 

− регіональна поправка логістики; 

− температурні показники (для матеріалів, чутливих до погоди). 

Всі ці параметри формують єдиний багатовимірний часовий ряд, який пода-

ється на вхід LSTM. 

Для побудови моделі необхідно правильно розподілити дані на вибірки: 

− Навчальна вибірка (70–80 %) – використовується для навчання ваг моделі. 

− Валідаційна вибірка (10–15 %) – використовується для контролю перена-

вчання та налаштування гіперпараметрів. 

− Тестова вибірка (10–15 %) – оцінює остаточну точність моделі на нових 

даних. 

Розподіл має проводитися по часу, а не випадковим чином, щоб уникнути 

витоку інформації, адже LSTM вивчає залежності між сусідніми відрізками. 

Схематично процес можна відобразити так (рис. 2.1): 
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Рис. 2.1 Схема формування часових вікон для подачі вхідних даних до LSTM-мо-

делі прогнозування матеріальних витрат 

 

На рис. 2.1 представлено процес формування вхідних даних для нейромере-

жевої моделі типу LSTM на основі методу ковзного вікна. Часовий ряд цін або ін-

ших показників матеріальних витрат розбивається на послідовні інтервали фіксо-

ваної довжини 𝑇, кожен з яких використовується як один навчальний приклад. Ко-

жне таке вікно містить значення параметрів за останні 𝑇 моментів часу та подається 

на вхід LSTM-моделі для аналізу довгострокових і короткострокових залежностей. 

На основі цієї послідовності модель формує прогноз наступного значення – 𝑦̂(𝑡 +

1), що відповідає прогнозованим матеріальним витратам у майбутній момент часу. 

Таким чином, метод ковзного вікна забезпечує перетворення неперервного часо-

вого ряду на набір структурованих навчальних вибірок, необхідних для коректного 

функціонування рекурентної мережі. 
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Одним із ключових рішень є вибір довжини часової історії, що подається на 

вхід моделі (вікно T). 

Типові значення: 

− T = 6 місяців – для короткострокових прогнозів. 

− T = 12 місяців – найпоширеніший тип. 

− T = 24 місяці – для моделей, що виявляють довгострокові тренди. 

Довше вікно дає більш повну інформацію, але збільшує складність моделі та 

вимоги до кількості даних. Вибір оптимального T проводиться експериментально. 

Для підтвердження інформативності відібраних параметрів застосовуються 

алгоритми: 

− Random Forest Feature Importance; 

− Gradient Boosting Feature Scores; 

− Permutation Feature Importance. 

Також може бути використана техніка SHAP (SHapley Additive exPlanations), 

яка дозволяє визначити внесок кожного параметра у прогноз та пояснити роботу 

моделі. 

На основі аналізу важливості ознак формується фінальний вхідний набір па-

раметрів. Ознаки, що мають низьку інформативність або дублюють інші, видаля-

ються, щоб запобігти перенавчанню. 

Після усіх кроків дані організуються у фінальний тензор (2.4): 

 

 

𝑋 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑑

𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑑

⋮ ⋮ ⋱ ⋮
𝑥𝑇,1 𝑥𝑇,2 ⋯ 𝑥𝑇,𝑑

], (2.4) 

 

де 𝑇 – довжина вікна (к-ть моментів часу); 

𝑑 – кількість параметрів вхідного вектора; 

𝑥𝑡,𝑗 – значення 𝑗 -го параметра в момент часу 𝑡. 

Саме цей тензор подається на вхід LSTM або гібридної архітектури. 
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Отже, обґрунтовано процедуру формування вхідних параметрів нейромере-

жевої моделі прогнозування матеріальних витрат на будівництво. Було визначено 

групи факторів, що впливають на формування вартості матеріалів: технічні, еконо-

мічні та зовнішні. Проведено розгляд методів очищення, нормалізації та структу-

рування даних, що забезпечують коректну форму подання інформації для навчання 

нейромережі. Побудовано структуру вхідного простору у вигляді багатовимірного 

часового ряду, визначено правила вибору часових вікон та підготовки навчальної 

вибірки. 

 

2.2. Розробка базової нейромережевої моделі 

 

Розробка базової нейромережевої моделі є фундаментальним етапом побу-

дови системи прогнозування матеріальних витрат на будівництво. Базова модель 

виступає відправною точкою, на основі якої здійснюється подальше вдосконалення 

архітектури, оптимізація гіперпараметрів та адаптація до специфіки будівельної га-

лузі. Її основним завданням є забезпечення стабільного та прогнозованого резуль-

тату, який демонструє здатність моделювати залежності у вихідних даних навіть 

без складних удосконалень. 

Одним із ключових рішень на даному етапі стало визначення оптимального 

типу нейронної мережі. З огляду на те, що матеріальні витрати формуються під 

впливом часових коливань, змін ринкової кон’юнктури та взаємозв’язку між тех-

ніко-економічними показниками, традиційні підходи – зокрема багатофакторна ре-

гресія або звичайні багатошарові нейронні мережі (DNN) – не можуть повною мі-

рою врахувати динамічну структуру даних. DNN ефективні для роботи з фіксова-

ними наборами ознак, однак вони не призначені для аналізу часових залежностей, 

оскільки обробляють дані у статичному вигляді. 

У зв’язку з цим у якості базового алгоритму було обрано архітектуру LSTM 

(Long Short-Term Memory) – різновид рекурентних нейронних мереж, спеціально 

розроблений для обробки часових рядів та подолання проблеми затухання 
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градієнта. LSTM здатна зберігати релевантну інформацію протягом тривалих інте-

рвалів часу, що забезпечує можливість врахування як локальних, так і глобальних 

тенденцій у зміні вартості матеріалів. Це дає можливість формувати більш точні 

прогнози, зокрема у випадках, коли ціноутворення залежить від циклічних, сезон-

них або ринкових коливань. 

Вимоги до базової моделі включали: 

– достатню простоту структури, що дає змогу оцінити ефективність LSTM 

без додаткових оптимізацій; 

– здатність моделі вловлювати основні залежності між вхідними ознаками; 

– можливість подальшого вдосконалення шляхом додавання гібридних ком-

понентів або алгоритмів оптимізації; 

– стабільність навчання та відсутність значних коливань похибки на валіда-

ційній вибірці; 

– адаптивність до різних типів даних – рядів цін, кількісних характеристик 

матеріалів, вторинних економічних показників. 

Таким чином, базова модель виступає логічною та необхідною частиною про-

цесу побудови нейромережевої системи прогнозування. Її архітектура дозволяє 

встановити вихідний рівень точності, визначити ключові фактори, що впливають 

на результат, та сформувати основу для подальших модифікацій, які розглядати-

муться у наступних частинах підрозділу. 

Після визначення концепції та мотивації вибору LSTM як основи для побу-

дови системи прогнозування необхідно сформувати структуру базової моделі. Ар-

хітектура відіграє ключову роль, оскільки визначає здатність мережі розпізнавати 

закономірності у даних, уникати перенавчання та забезпечувати збалансоване спів-

відношення між точністю та обчислювальною складністю. 

Нейронні мережі, особливо LSTM та гібридні архітектури, демонструють 

найкращі результати для прогнозування витрат у динамічному середовищі, хоча 

вимагають значних обчислювальних ресурсів. 

LSTM-мережа складається з комірок пам’яті (memory cells), що мають три 

основні вентилі – вхідний, забуття та вихідний. Саме вони дозволяють 
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контролювати, яка інформація зберігається або видаляється з довготривалої 

пам’яті, що є критичним при аналізі часових рядів будівельних витрат. 

Нижче наведені основні формули LSTM (1.1-1.1.6). 

Вентиль забуття (forget gate): 

 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (2.5) 

 

де 𝑓𝑡 – вектор забуття на кроці часу 𝑡; 

𝜎 – сигмоїдна функція активації; 

𝑊𝑓 – матриця ваг вентиля забуття; 

ℎ𝑡−1 – прихований стан попереднього кроку; 

𝑥𝑡 – вхідний вектор у момент часу 𝑡 (наприклад, ціни або інші ознаки); 

𝑏𝑓 – вектор зміщень вентиля забуття. 

Вхідний вентиль: 

 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (2.6) 

 

де 𝑖𝑡 – ступінь важливості нової інформації; 

𝑊𝑖 – матриця ваг вхідного вентиля; 

𝑏𝑖 – зміщення вхідного вентиля. 

Кандидат на новий стан комірки: 

 

 𝐶̃𝑡 = tan(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶), (2.7) 

 

де 𝐶̃𝑡 – новий кандидат на збереження в пам'яті; 



48 

 

𝑊𝐶 – матриця ваг; 

𝑏𝐶 – вектор зміщень; 

tan – гіперболічний тангенс, який використовується для нормалізації зна-

чень. 

Оновлення стану комірки: 

 

 𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡, (2.8) 

 

де 𝐶𝑡 – оновлений стан пам’яті у кроці 𝑡; 

𝐶𝑡−1 – стан пам’яті попереднього кроку; 

⊙ – поелементне множення. 

Вихідний вентиль: 

 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (2.9) 

 

де 𝑜𝑡 – величина виходу з комірки; 

𝑊𝑜, 𝑏𝑜 – ваги та зміщення вихідного вентиля. 

Остаточний вихід LSTM-блоку: 

 

 ℎ𝑡 = 𝑜𝑡⨀ tan(𝐶𝑡), (2.10) 

 

де ℎ𝑡 – прихований стан LSTM на момент 𝑡 (саме він використовується для 

прогнозу). 

Ці рівняння визначають процес обробки часової інформації, що дозволяє 

LSTM моделювати зміну вартості матеріалів та витрат у часі. 

На рис. 2.2 представлено схему LSTM-моделі. 
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Рис. 2.2 Схема LSTM-моделі 

 

Представлена (див. рис. 2.2) структура стандартної LSTM-комірки  склада-

ється з трьох основних вентилів – вентиля забуття, вхідного вентиля та вихідного 

вентиля. 

1. Вентиль забуття 𝑓𝑡 визначає, яка частина попереднього стану пам’яті 𝐶𝑡−1 

має бути збережена. Сигмоїдна активація забезпечує значення у межах [0; 1], що 

дозволяє “відсіювати” нерелевантну інформацію. 

2. Вхідний вентиль 𝑖𝑡 регулює, яка частина нової інформації 𝐶̃𝑡, згенерованої 

через тангенс-гіперболічну активацію, буде додана до стану пам’яті. Це дозволяє 

моделі оновлювати внутрішню пам’ять на основі поточного входу 𝑥𝑡 та поперед-

нього виходу ℎ𝑡−1. 

3. Оновлення стану пам’яті відбувається шляхом поелементного поєднання 

результатів вентилів забуття та входу, що формує новий стан 𝐶𝑡. Такий механізм 

дозволяє моделі ефективно зберігати важливу довготривалу інформацію. 

4. Вихідний вентиль 𝑜𝑡 визначає, яка частина оновленого стану пам’яті пот-

рапить у фінальний вихід ℎ𝑡. Після цього інформація проходить через тангенс-гі-

перболічну функцію, що нормалізує значення у межах [−1; 1]. 
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Таким чином, LSTM-комірка забезпечує контрольований потік інформації 

через мережу, що дозволяє моделі ефективно вловлювати довготривалі залежності 

у даних – одну з ключових вимог для точного прогнозування будівельних витрат і 

цін матеріалів. 

Базова модель розробляється з урахуванням принципу «достатньої складно-

сті» – вона має бути достатньо потужною, щоб ефективно опрацьовувати часові 

залежності, але водночас не надмірно громіздкою, аби уникнути перенавчання та 

забезпечити можливість подальшої гнучкої модифікації. 

Базова модель включає три основні блоки: 

1. Вхідний шар (Input Layer): 

Цей шар приймає попередньо підготовлені дані у вигляді матриці розмірно-

сті, яка дорівнює кількості кроків часу на кількість ознак. 

Кроками часу є значення цін або інші показники за певні періоди (наприклад, 

дні, місяці). Ознаки: це можуть бути показники вартості матеріалів, обсяги робіт, 

економічні індекси тощо. 

2. LSTM-шар (Long Short-Term Memory Layer): 

Це центральний елемент моделі, який виконує обробку часових залежностей. 

У базовій архітектурі застосовується один LSTM-шар із кількістю нейронів 

від 32 до 64 (кількість може уточнюватися після первинних експериментів). 

Кожен LSTM-нейрон містить три типи «вікон» (гейтів): 

− forget-gate – визначає, яку інформацію слід зберегти, а яку відкинути; 

− input-gate – контролює оновлення стану; 

− output-gate – формує вихід на наступний часовий крок. 

Для LSTM використовується активаційна функція tanh, а для гейтів – sigmoid 

(σ). 

Це забезпечує баланс між стабільністю навчання та здатністю до нелінійного 

моделювання. 

3. Вихідний блок (Output Block): 

Після LSTM-шару розміщується один або два щільні (Dense) шари: 
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− Dense (16 нейронів) – проміжна обробка, нелінійна трансформація ознак; 

− Dense (1 нейрон) – фінальний вихід моделі, який формує прогноз вартості 

у числовому вигляді. 

Для вихідного нейрона використовується лінійна активація, оскільки задача 

має регресійний характер. 

Принцип роботи базової нейромережевої архітектури ґрунтується на послі-

довній обробці даних, що відображають часову динаміку матеріальних витрат. На 

першому етапі модель отримує вхідні дані у вигляді нормалізованих часових фраг-

ментів, кожен з яких містить послідовність значень ключових економічних та тех-

нічних показників. Ці дані подаються до LSTM-шару, який виконує роль основного 

механізму вилучення часових залежностей. LSTM здатна запам’ятовувати важливі 

тенденції і відкидати незначну інформацію завдяки структурі комірок пам’яті та 

управляючих вентилів, що дозволяє ефективно моделювати як короткострокові ко-

ливання, так і довготривалі тренди у зміні вартості матеріалів. 

Після обробки послідовностей LSTM формує вектор стану, який узагальнює 

всі релевантні часові залежності. Цей вектор передається до першого Dense-шару, 

який виконує роль проміжної нелінійної трансформації. На цьому етапі модель ви-

діляє більш високорівневі ознаки та згладжує потенційні аномалії, що виникли у 

процесі збирання даних. Наявність активаційної функції, наприклад ReLU, дозво-

ляє мережі моделювати складні нелінійні взаємозв’язки, які часто характерні для 

вартості будівельних матеріалів. 

Фінальний Dense-шар формує точковий прогноз – числове значення матеріа-

льних витрат на заданий горизонт прогнозування. Він використовує лінійну акти-

вацію, оскільки вихідним параметром є безперервна величина. Уся архітектура на-

вчається шляхом мінімізації функції втрат, зокрема середньоквадратичної похибки 

(MSE), яка забезпечує чутливість до великих відхилень прогнозу від фактичних 

значень. Таким чином, базова модель послідовно трансформує сирі дані у структу-

рований часовий сигнал, вилучає з нього ключові тенденції та формує числовий 

прогноз, що відображає очікувану динаміку матеріальних витрат у будівництві. 
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Обрана архітектура базової нейромережевої моделі ґрунтується на прагненні 

забезпечити оптимальний баланс між точністю прогнозування й обчислювальною 

ефективністю. Використання лише одного LSTM-шару в початковій конфігурації 

пояснюється тим, що на ранньому етапі розробки необхідно перевірити, наскільки 

часові залежності у даних дійсно впливають на якість прогнозу. LSTM-мережі ма-

ють високу здатність до моделювання нелінійних і довготривалих залежностей, од-

нак їх надмірне ускладнення без достатнього обсягу даних може призвести до пе-

ренавчання. Саме тому модель вибудувана як базова – достатньо потужна для захо-

плення ключових закономірностей, але не надмірно глибока. 

Подальше використання двох Dense-шарів дає змогу перетворити вихід 

LSTM у компактне представлення та сформувати точковий прогноз вартості. Нелі-

нійна трансформація у проміжному Dense-шарі дозволяє згладити шум та виділити 

найбільш інформативні ознаки перед генерацією фінального результату. Крім того, 

така структура є універсальною: вона може бути легко масштабована, доповнена 

механізмами регуляризації, оптимізації або розширена до гібридних моделей – 

LSTM-CNN, BiLSTM чи мультимодальних підходів. 

Отже, базова архітектура є раціональним стартом для дослідження, оскільки 

дозволяє отримати об’єктивну оцінку потенціалу LSTM-підходу для задачі прогно-

зування матеріальних витрат. У подальших підрозділах модель може бути адапто-

вана та вдосконалена відповідно до специфіки даних та вимог до точності прогно-

зування. 

Принцип роботи базової нейромережевої моделі для прогнозування матеріа-

льних витрат ґрунтується на поетапному перетворенні вхідних параметрів у фіна-

льне прогнозне значення. На першому етапі модель отримує нормалізовані та по-

передньо структуровані дані. Вхід представляє собою набір часових послідовнос-

тей (вікон спостережень), кожне з яких містить інформацію про історичні ціни на 

конкретний будівельний матеріал, а також супутні фактори: обсяги виконаних робіт, 

технічні параметри об’єкта, ринкові індекси та економічні показники. Такий формат 

дозволяє моделі враховувати часову послідовність та виявляти динаміку змін. 
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Основним структурним елементом моделі є шар LSTM. Його ключова особ-

ливість – наявність внутрішньої пам’яті, завдяки якій мережа може зберігати, оно-

влювати або забувати інформацію про попередні часові кроки. Це забезпечується за 

допомогою трьох типів воріт: вхідних, вихідних і забувальних. Вони дозволяють 

LSTM адаптуватися до як короткострокових коливань, так і довготривалих трендів 

у даних. На практиці це означає, що модель може розрізняти швидкі зміни (напри-

клад, тимчасові цінові зниження) і стійкі тенденції (наприклад, сезонне зростання 

або довгострокові ринкові зрушення). 

Отримане приховане представлення передається до повнозв’язного (Dense) 

шару, який виконує роль нелінійного перетворювача ознак. Цей шар узагальнює 

отримані часові залежності та виділяє найінформативніші компоненти. Завдяки 

цьому модель здатна скоротити внутрішній вектор ознак та адаптувати його для по-

дальшого прогнозу. Після цього останній Dense-шар із лінійною активацією формує 

точкове прогнозне значення – оцінку майбутньої вартості матеріалу або сукупних 

матеріальних витрат на визначений період. 

Таким чином, робота моделі базується на поєднанні механізмів запам’ятову-

вання часових структур та інтерпретації нелінійних взаємозв’язків між вхідними 

ознаками. Така архітектура дозволяє забезпечити достатню точність прогнозування 

в умовах складної, нестабільної та багатофакторної поведінки ринку будівельних 

матеріалів, що робить її ефективною основою для подальшої адаптації та розши-

рення в межах цієї магістерської роботи. 

Процес навчання базової нейромережевої моделі є ключовим етапом, що ви-

значає її здатність прогнозувати матеріальні витрати з високою точністю. Оскільки 

модель використовує часові ряди та багатофакторні дані, правильна організація на-

вчальної процедури дозволяє збалансувати швидкість збіжності, стійкість до шуму 

та узагальнення закономірностей, притаманних будівельному ринку. 

На першому етапі навчання здійснюється підготовка вибірки. Історичні дані 

про ціни на матеріали, індекси будівельної активності, технічні параметри проєктів 

та економічні показники нормалізуються методом MinMax або StandardScaler, що 

запобігає домінуванню окремих ознак у процесі навчання. Далі формується 
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віконний набір даних: кожне вікно містить послідовність спостережень певної три-

валості (наприклад, 12 або 24 попередніх місяців) та відповідне цільове значення – 

ціну або сумарні матеріальні витрати в наступному часовому кроці. 

Для оптимізації вагових коефіцієнтів моделі використовується алгоритм 

Adam, що поєднує адаптивну швидкість навчання та моменти градієнтів. Це дозво-

ляє пришвидшити збіжність і стабілізувати навчання навіть у ситуаціях, коли дані 

містять різноспрямовані коливання. Функцією втрат зазвичай обирається середньо-

квадратична похибка (MSE) або середня абсолютна похибка (MAE), оскільки вони 

найкраще відображають цінові відхилення та є стандартними метриками у задачах 

регресії. Також обчислюється коефіцієнт детермінації R², який оцінює здатність мо-

делі пояснювати варіацію прогнозованих значень. 

Для покращення узагальнювальної здатності застосовується механізм валіда-

ції. Дані розділяються на навчальну, валідаційну та тестову вибірки, що дозволяє 

відстежувати процес тренування та запобігати перенавчанню. У разі виявлення зна-

чної різниці між помилками навчання та валідації застосовуються додаткові 

прийоми: Dropout, збільшення навчальної вибірки через аугментацію часових рядів 

або регуляризація ваг L2. Також використовується механізм Early Stopping, який зу-

пиняє навчання в момент, коли якість моделі перестає покращуватися. 

Завдяки цим процедурам модель набуває здатності точно відтворювати як ко-

роткострокові, так і довгострокові тенденції, зберігаючи при цьому стабільність та 

стійкість до аномальних коливань ринку. Такий підхід забезпечує надійний фунда-

мент для подальшої адаптації моделі під специфіку прогнозування матеріальних 

витрат у наступних підрозділах. 

 

2.3. Адаптація нейромережевої моделі до прогнозування матеріальних 

витрат на будівництво 

 

Прогнозування матеріальних витрат у будівництві є математично складною 

задачею, оскільки вартість більшості будівельних матеріалів формується під впли-

вом багатьох динамічних факторів, які змінюються в часі. На відміну від звичайних 



55 

 

задач регресії, ринок будівельних матеріалів має властивості сезонності, волатиль-

ності, нелінійності та багатофакторності, що накладає особливі вимоги до струк-

тури моделі. Формально це можна описати наступним чином. 

1. Формалізація цінового ряду 

Ціна конкретного матеріалу у момент часу 𝑡 визначається як: 

 

 𝑃(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝜀(𝑡), (2.11) 

 

де 𝑇(𝑡) – довгостроковий тренд; 

𝑆(𝑡) – сезонна компонента; 

𝐶(𝑡) – циклічні (економічні) коливання; 

𝜀(𝑡) – стохастичний шум. 

Для багатьох будівельних матеріалів тренд є нелінійним і може бути аппрок-

симований експоненціальною моделлю (2.12): 

 

 𝑇(𝑡) = 𝑇0 ∙ 𝑒𝛼𝑡, (2.12) 

 

де 𝛼– коефіцієнт довгострокового зростання. 

2. Математичний опис сезонності 

Сезонні коливання для таких матеріалів, як цемент, арматура та деревина, ча-

сто виражаються гармонічною моделлю (2.13): 

 

 𝑆(𝑡) = 𝐴1 sin (
2𝜋𝑡

12
) + 𝐴2 cos (

2𝜋𝑡

12
), (2.13) 

 

де 𝐴1 та 𝐴2 – амплітуди сезонних коливань. 

У векторній формі (2.8) сезонні характеристики можна подати як: 
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𝑠(𝑡) = [
sin (

2𝜋𝑡

12
)

cos (
2𝜋𝑡

12
)

]. (2.14) 

 

3. Волатильність цінового ринку 

Цінові ряди матеріалів є волатильними, тому зміни ціни часто аналізують че-

рез логарифмічні доходності: 

 

 
𝑟(𝑡) = ln (

𝑃(𝑡)

𝑃(𝑡 − 1)
). (2.15) 

  

та їхню дисперсію (2.10): 

 

 

𝜎2 =
1

𝑁 − 1
∑(𝑟(𝑡) − 𝑟)2

𝑁

𝑡=1

. (2.16) 

 

Матеріали з високою волатильністю (арматура, метал) вимагають моделі зі 

здатністю згладжувати стрибки. 

4. Вплив макроекономічних факторів 

Вартість матеріалів залежить від макропоказників: 

 

 𝑃(𝑡) = 𝑓(Infl(𝑡), FX(𝑡), IndProd(𝑡), Oil(𝑡), … ). (2.17) 

 

Формально це багатовимірна регресійна задача: 

 

 𝑃(𝑡 + 1) = 𝐹(𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑘(𝑡)), (2.18) 

 

де 𝑋𝑖(𝑡) – макроекономічні ознаки. 

5. Гетерогенність матеріалів 
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Різні матеріали мають різні характеристики, тому їхні моделі поведінки мо-

жна описати як: 

 

 𝑃𝑚(𝑡) = 𝑇𝑚(𝑡) + 𝑆𝑚(𝑡) + 𝐶𝑚(𝑡) + 𝜀𝑚(𝑡), 

𝑚 = 1, 2, … , 𝑀, 

(2.19) 

 

де кожен матеріал 𝑚 має свій власний тренд, сезонність і реагування на зов-

нішні фактори.d 

6. Модель LSTM 

Оскільки: 

 

 𝑃(𝑡 + 1) ⊥ 𝑃(𝑡), 𝑃(𝑡 − 1), … . (2.20) 

 

маємо маркову залежність довгого порядку, тому LSTM є природним вибо-

ром: 

 

 ℎ𝑡 = LSTM(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1), (2.21) 

 

де ℎ𝑡 – прихований стан; 

𝑐𝑡 – вектор пам’яті; 

𝑥𝑡 – вхідний вектор ознак. 

7. Вимоги до моделі 

Модель повинна задовольняти наступні критерії: 

− мінімізувати 𝔼 [(𝑃(𝑡) − 𝑃̂(𝑡))
2

]; 

− захоплювати сезонність 𝑆(𝑡); 

− враховувати тренд 𝑇(𝑡); 

− бути стійкою до шуму 𝜀(𝑡); 

− адекватно реагувати на макрофактори 𝑋𝑖(𝑡); 

− забезпечувати узагальнення для специфічних матеріалів 𝑃𝑚(𝑡). 
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Попередня обробка даних є критично важливим етапом адаптації нейромере-

жевої моделі до задачі прогнозування матеріальних витрат, оскільки від її якості 

безпосередньо залежить точність, стабільність та швидкість навчання моделі. На 

відміну від класичних регресійних підходів, для нейромережевих моделей – і особ-

ливо для LSTM – дані повинні мати узгоджений масштаб, структурованість у часі 

та мінімальний рівень шуму. У цій частині формалізуються основні процедури по-

передньої обробки. 

1. Нормалізація даних 

Для коректної роботи моделей LSTM всі змінні приводяться до одного масш-

табу. Найчастіше застосовується мін–макс нормалізація (2.22): 

 

 𝑥∗ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (2.22) 

 

де 𝑥 – вихідне значення ознаки; 

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 – мінімум і максимум у стовпці; 

𝑥∗ – нормалізоване значення. 

У випадку ознак із сильною волатильністю (наприклад, ціни на метал) доці-

льно використовувати z-нормалізацію (2.23): 

 

 𝑥∗ =
𝑥 − 𝜇

𝜎
, (2.23) 

 

де 𝜇 – математичне сподівання; 

𝜎 – стандартне відхилення. 

2. Обробка пропусків у даних 

Пропуски у часових рядах будівельних матеріалів – поширена проблема. Фо-

рмально пропуск можна визначити як: 

 

 𝑥(𝑡) = ∅. (2.24) 
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Для їх заповнення використовуються такі методи: 

Лінійна інтерполяція (2.25): 

 

 
𝑥(𝑡) = 𝑥(𝑡1) +

𝑥(𝑡2) − 𝑥(𝑡1)

𝑡2 − 𝑡1
∙ (𝑡 − 𝑡1), (2.25) 

 

де 𝑡1та 𝑡2 – найближчі сусідні часові точки. 

Експоненційне згладжування (2.26): 

 

 𝑥(𝑡) = 𝛼𝑥(𝑡 − 1) + (1 − 𝛼)𝑥(𝑡 − 2), 0 < 𝛼 < 1. (2.26) 

 

Заповнення за моделлю тренду (2.27): 

 

 𝑥(𝑡) = 𝑇0 ∙ 𝑒𝛽𝑡 . (2.27) 

 

що використовується, коли пропуск охоплює великі проміжки часу. 

3. Побудова ознак сезонності 

Оскільки ринок будівельних матеріалів демонструє виражену сезонність, ви-

користовують гармонічні ознаки: 

 

 
𝑠1(𝑡) = sin (

2𝜋𝑡

12
), (2.28) 

 
𝑠2(𝑡) = cos (

2𝜋𝑡

12
). (2.29) 

 

Для тижневих даних: 

 

 
𝑠1(𝑡) = sin (

2𝜋𝑡

12
), (2.30) 
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𝑠2(𝑡) = cos (

2𝜋𝑡

12
). (2.31) 

 

Ці ознаки додаються до вхідного вектора, щоб LSTM мала доступ до сезонної 

структури ринку. 

4. Формування лагових ознак (віконний підхід) 

Для LSTM необхідно сформувати вхідні вікна (2.32) довжиною 𝑘: 

 

 𝑋𝑡 = {𝑃(𝑡 − 𝑘 + 1), 𝑃(𝑡 − 𝑘 + 2), … , 𝑃(𝑡)}. (2.32) 

 

Тоді модель прогнозує: 

 

 𝑃̂(𝑡 − 1) = 𝐹(𝑋𝑡). (2.33) 

 

У загальному випадку вектор входу (2.34) включає не тільки ціну, а й інші 

змінні: 

 

 𝑋𝑡 = [𝑃(𝑡)     Infl(𝑡)    FX(𝑡)    𝑠1(𝑡)   𝑠2(𝑡)]. (2.34) 

 

5. Видалення тренду 

Щоб полегшити навчання моделі, інколи ціни переводять у відсоткові приро-

сти: 

 

 
∆𝑃(𝑡) =

𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡 − 1)
. (2.35) 

 

Або логарифмічні доходності: 

 

 
𝑟(𝑡) = ln (

𝑃(𝑡)

𝑃(𝑡 − 1)
). (2.36) 
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Такі ряди є більш стаціонарними, що покращує роботу LSTM. 

6. Декомпозиція ряду для зменшення шуму 

Ряд може бути розкладений методом STL або VMD:  

 

 𝑃(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡), (2.37) 

 

де 

𝑇(𝑡) – тренд; 

𝑆(𝑡) – сезонність; 

𝑅(𝑡) – залишкова шумова компонента. 

Для LSTM використовують: 

 

 𝑃(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡). (2.38) 

 

7. Формування навчальної, валідаційної та тестової вибірок 

Нехай дані містять 𝑁 записів. Тоді: 

 

 Train size = [0.7N], (2.39) 

 Val size = [0.15N], (2.40) 

 Test Size = N – (Train + Val) (2.41) 

 

Оскільки дані часові, розбиття виконується без перемішування: 

 Train < Val < Test (2.42) 

 

У процесі адаптації базової LSTM-моделі було встановлено, що стандартної 

архітектури недостатньо для якісного моделювання складної динаміки цін на буді-

вельні матеріали. Матеріальні витрати формуються під впливом різнорідних фак-

торів: ринкової кон’юнктури, сезонних коливань, попиту та пропозиції, змін 
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вартості сировини, логістичних витрат тощо. Такі процеси мають нелінійний хара-

ктер і поєднують як короткострокові, так і довгострокові залежності. Тому модель 

потребувала модифікацій, спрямованих на поглиблення здатності нейронної мережі 

до виявлення прихованих закономірностей у часових рядах. 

Нижче наведена схема архітектури LSTM-моделі для прогнозування матеріа-

льних витрат (рис. 2.3). 

 

 
 

Рис. 2.3 Архітектура LSTM-моделі для прогнозування матеріальних витрат 

 

На рис. 2.3 представлено структурну схему базової LSTM-моделі, розробле-

ної для прогнозування матеріальних витрат на будівництво. Модель отримує на вхід 

багатовимірні часові ряди, що містять історичні значення вартості матеріалів та 

пов’язаних техніко-економічних показників. Ці дані подаються до LSTM-шару, 

який забезпечує обробку послідовностей та здатний враховувати короткострокові й 

довгострокові залежності у динаміці зміни витрат. 

Вихід LSTM-шару передається до проміжного повнозв’язного (Dense) шару, 

завданням якого є додаткове перетворення ознак та виділення найбільш значущих 

залежностей. Зрештою, останній вихідний шар формує підсумкове прогнозне зна-

чення матеріальних витрат на наступний часовий крок. Така архітектура є простою, 

проте достатньо гнучкою для моделювання нелінійних взаємозв’язків та адаптації 

до коливань у часових рядах. 

Першим кроком стало розширення архітектури за рахунок додавання другого 

LSTM-шару, що дозволило моделі вчитися на більш складних патернах. Перший 

шар відповідає за виділення базових закономірностей, тоді як другий узагальнює їх 
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на більш високому рівні абстракції. Застосування багатошарової структури дозво-

ляє значно краще моделювати нелінійні взаємозв’язки, що особливо важливо для 

сценаріїв різких цінових коливань. 

Наступним етапом було підсилення моделі за допомогою додаткового щіль-

ного (Dense) шару, який виконує роль проміжного перетворення та забезпечує пла-

внішу адаптацію до фінального прогнозу. Завдяки цьому модель здобуває здатність 

навчатися більш гнучким відображенням між виходами LSTM та прогнозованим 

значенням. 

Окрему увагу приділено механізмам регуляризації, оскільки глибші моделі 

схильні до перенавчання, особливо при роботі з даними, що містять шум або нері-

вномірні інтервали. Регуляризаційний шар Dropout, доданий між LSTM-компонен-

тами, дозволив зменшити ймовірність того, що мережа запам’ятовуватиме специ-

фічні коливання окремих сегментів даних, замість того щоб навчатися узагальне-

ним тенденціям. 

Ключовим елементом удосконалення архітектури стало введення різних ти-

пів вхідних ознак, які включають не лише часовий ряд вартості конкретного мате-

ріалу, але й супровідні ринкові та економічні параметри. Це дає змогу моделі ана-

лізувати не один вимір, а комплекс факторів, які спільно визначають динаміку цін. 

Такий підхід дозволив підвищити стійкість прогнозів і краще адаптувати модель до 

зміни ринкової ситуації. 

Для забезпечення стабільної роботи у реальних умовах було впроваджено ме-

ханізм ковзного прогнозування, який передбачає використання декількох останніх 

інтервалів часу як вхідного вікна. Це дозволило формувати більш стійкі прогнози і 

враховувати як локальні тенденції, так і загальний тренд. 

У результаті проведених модифікацій вдалося суттєво покращити точність 

прогнозування, зменшити чутливість до шуму, підвищити стабільність моделі при 

різних сценаріях ринкових коливань та забезпечити можливість масштабування ар-

хітектури для подальшого використання у гібридних чи мультимодальних підходах. 

Після модифікації архітектури моделі постає завдання забезпечення її опти-

мальної роботи в реальних умовах експлуатації. Навіть найкраща структура 
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нейронної мережі може давати нестабільні або неточні результати без правильно 

підібраних параметрів навчання. Тому на етапі адаптації особливу увагу приділено 

оптимізації моделі, удосконаленню процесу тренування та підвищенню здатності 

моделі узагальнювати інформацію з нових, раніше невідомих даних. 

Першим кроком стала оптимізація гіперпараметрів, що включає підбір шви-

дкості навчання, розміру мініпакету, кількості епох, кількості нейронів у прихова-

них шарах, а також глибини архітектури. Неправильно підібрані гіперпараметри 

можуть призвести до або надто повільного навчання, або до нестабільних коливань 

похибки. Тому використовувалися методи автоматизованого налаштування, зок-

рема grid search та random search, які дозволили визначити оптимальні ділянки про-

стору параметрів. Отримані результати показали, що модель демонструє найкращу 

точність при помірній швидкості навчання та використанні адаптивного оптиміза-

тора Adam, який забезпечує стабільну збіжність. 

Другим важливим завданням стала боротьба з перенавчанням, яке є типовою 

проблемою глибоких моделей, особливо у випадках роботи з обмеженим набором 

даних. Для цього застосовано кілька підходів. По-перше, регуляризація Dropout з 

невеликим коефіцієнтом дала змогу частково вимикати випадкові нейрони під час 

тренування, що сприяє формуванню більш узагальнених представлень. По-друге, 

було реалізовано механізм ранньої зупинки (Early Stopping), який автоматично при-

пиняє навчання, коли модель перестає покращуватися на валідаційній вибірці. Це 

дозволило уникнути ситуацій, коли мережа починає “запам’ятовувати” шум замість 

навчання реальним залежностям. 

Наступним етапом стала нормалізація вхідних даних, що забезпечує стабіль-

ний розподіл ознак і дозволяє моделі уникати надмірного зміщення ваг. Різниця в 

масштабах (наприклад, між літрами палива та метрами кубічними бетону) може не-

гативно вплинути на навчання, тому всі дані були приведені до єдиного діапазону. 

Це дозволило прискорити процес збіжності та підвищити точність прогнозу на ета-

пах тестування. 

Особлива увага приділена перевірці моделі на стійкість, оскільки будівельна 

галузь характеризується високою мінливістю ринкових факторів. Для цього модель 
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тестувалася на даних різної природи та з різних часових періодів, включаючи пері-

оди економічної нестабільності. У результаті стало очевидно, що модель здатна від-

творювати як плавні, так і різкі цінові коливання завдяки глибинній часовій струк-

турі, притаманній LSTM-шарам. 

Важливо також відзначити процес крос-валідації, який дозволив більш 

об’єктивно оцінити узагальнювальну здатність моделі. За допомогою розбиття да-

них на декілька підвибірок вдалося уникнути залежності результатів від конкрет-

ного набору тренувальних прикладів. Крос-валідація підтвердила стабільність мо-

делі та відсутність критичних переходів між недостатнім навчанням і перенавчан-

ням. 

Крім цього, для підвищення узагальнювальної здатності було впроваджено 

ансамблювання прогнозів, коли кілька результатів моделі комбінуються для форму-

вання більш точного та стійкого підсумкового значення. Це дозволяє пом’якшити 

ефект випадкових коливань та підвищити довіру до фінального прогнозу. 

У підсумку впроваджені методи оптимізації дозволили досягти високої точ-

ності та стабільності результатів, а також підвищили стійкість моделі до змін рин-

кової кон’юнктури та неповноти даних. Оптимізований варіант ЛСТМ-моделі є го-

товим до подальшої інтеграції у практичні системи прогнозування матеріальних 

витрат і може використовуватися у реальних сценаріях кошторисного планування. 

Після завершення оптимізації та модифікації архітектури важливим етапом є 

узгодження розробленої нейромережевої моделі з реальними умовами її практич-

ного використання у будівельній галузі. На відміну від контрольованих експериме-

нтальних умов, де структура даних є відносно стабільною та передбачуваною, у 

реальній практиці існує значна кількість зовнішніх чинників, які впливають на то-

чність і надійність прогнозування. Тому модель повинна бути не лише математично 

коректною, але й пристосованою до практичного застосування – як у системах ко-

шторисного планування, так і у програмних комплексах управління ресурсами. 

Однією з ключових вимог є стабільність роботи моделі за умов неповних, не-

рівномірних та зашумлених даних. У будівельній практиці дані можуть бути пред-

ставлені з різною періодичністю, містити пропуски або різко змінювати свій 
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характер через коливання попиту, валютні зміни чи перебої у постачанні матеріалів. 

Для забезпечення стійкості моделі було впроваджено механізми попередньої пере-

вірки та автоматичного коригування даних. Вони дозволяють адаптувати часові 

ряди до форматів, необхідних для прогнозування, і зменшити вплив випадкових ко-

ливань. 

Наступним важливим аспектом є адаптивність до економічних або сезонних 

зрушень, які змінюють структуру даних у довгостроковій перспективі. Для роботи 

з такими ефектами модель може періодично перенавчатися на нових даних або ви-

користовувати ковзне вікно навчання, яке забезпечує врахування актуальної інфор-

мації без необхідності повного повторного навчання. Такий підхід дозволяє системі 

швидко реагувати на зміну цінових тенденцій та зберігати високу точність прогно-

зування навіть у нестабільних ринкових умовах. 

Важливе місце займає питання масштабованості моделі, оскільки будівельні 

організації часто працюють із різними типами матеріалів, регіональними коефіціє-

нтами, обсягами робіт та логістичними умовами. Розроблена модель може бути ада-

птована для нових матеріалів і регіонів шляхом додавання відповідних вхідних оз-

нак або застосування попереднього перенавчання. Завдяки цьому модель не є жор-

стко прив’язаною до одного ринку, а може бути інтегрована у систему, яка враховує 

специфіку різних областей або країн. 

Окрему увагу приділено інтерпретованості результатів, оскільки фахівці, які 

працюють з кошторисами, повинні розуміти причини зміни прогнозу. Хоча ней-

ронні мережі традиційно вважаються «чорними скриньками», застосування методів 

оцінки значущості ознак дозволяє пояснити, які чинники найбільше вплинули на 

результат. Це підвищує довіру до моделі з боку користувачів і спрощує процес прий-

няття рішень щодо закупівель чи планування витрат. 

Також важливо забезпечити ефективність моделі з точки зору обчислюваль-

них витрат. У практиці будівельних підприємств прогнозування матеріальних ви-

трат може виконуватися на звичайних персональних комп’ютерах або у складі кор-

поративних інформаційних систем. Тому модель повинна працювати достатньо 

швидко та не потребувати надмірних ресурсів. Завдяки оптимальному підбору 
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архітектури та гіперпараметрів досягнуто можливості виконувати прогноз за час-

тки секунди, що робить модель придатною для інтерактивних систем та оновлення 

даних у режимі реального часу. 

З огляду на всі зазначені аспекти, можна зробити висновок, що адаптована 

нейромережева модель відповідає практичним вимогам будівельної галузі. Вона за-

безпечує високу точність прогнозування, стійкість до шумів та економічних змін, 

масштабованість на різні типи даних та можливість інтеграції у програмні засоби 

кошторисного планування. Такий рівень узгодженості дає змогу використовувати 

модель як інструмент підтримки управлінських рішень у сфері матеріально-техні-

чного забезпечення та бюджетного планування будівельних проєктів. 

 

 

2.4. Висновки до розділу 2 

 

Другий розділ присвячено вирішенню науково-прикладної задачі розробки 

нейромережевої моделі прогнозування матеріальних витрат на будівництво. У ре-

зультаті проведеного дослідження: 

− Отримала подальший розвиток процедура визначення вхідних параметрів 

нейромережевої моделі, що за рахунок формалізації впливових факторів – техніч-

них характеристик об’єкта, ринкових індикаторів та макроекономічних показників 

– забезпечує можливість підвищення точності прогнозування при збереженні ре-

сурсоощадності моделі. 

− Отримала подальший розвиток базова архітектура нейромережевої моделі, 

яка за рахунок обґрунтованого вибору структури LSTM-мережі та налаштування її 

параметрів забезпечує можливість ефективного опрацювання часових рядів зміни 

вартості будівельних матеріалів. 

− Отримала подальший розвиток методика адаптації моделі до умов реаль-

ного будівельного ринку, що полягає у впровадженні механізмів нормалізації, 
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регуляризації, оптимізації гіперпараметрів і валідації, що сприяє підвищенню стій-

кості моделі до ринкової волатильності та зменшенню похибок прогнозу. 

Таким чином, у другому розділі сформовано теоретичні засади і практичні 

підходи, що стануть основою для програмної реалізації та експериментальних дос-

ліджень у наступному розділі цієї кваліфікаційної роботи. 
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РОЗДІЛ 3. СИСТЕМА ПРОГНОЗУВАННЯ МАТЕРІАЛЬНИХ ВИТРАТ 

НА БУДІВНИЦТВО 

 

3.1 Обґрунтування вибору середовища та мови програмування 

 

Розроблення програмної системи для прогнозування матеріальних витрат на 

будівництво вимагає вибору такого середовища програмування, яке забезпечує ви-

соку продуктивність, доступність необхідних бібліотек, гнучкість налаштування 

моделей глибинного навчання та можливість масштабування. Сучасні інструменти 

машинного навчання надають широкий спектр можливостей для створення, нав-

чання та оптимізації нейронних мереж, проте їх ефективність залежить від відпо-

відності обраного технологічного стеку поставленим вимогам. 

Основними критеріями вибору середовища та мови програмування для цієї 

роботи є: 

1. Наявність високорівневих бібліотек глибокого навчання, які підтримують 

роботу з LSTM та гібридними моделями. 

2. Підтримка обробки та аналізу часових рядів у різних форматах. 

3. Продуктивність при навчанні моделей на великих даних, зокрема можли-

вість використання GPU. 

4. Зручність реалізації, читабельність коду та активна спільнота підтримки. 

5. Можливість інтеграції моделі у майбутні системи (веб-додатки, внутрішні 

ПЗ, хмарні служби). 

На основі аналізу сучасних технологій було обрано мову програмування 

Python як основну для реалізації моделі прогнозування. Python є де-факто стандар-

том у сфері машинного навчання та наукових обчислень, що зумовлено наявністю 

численних бібліотек, розвиненою екосистемою та широкою підтримкою з боку до-

слідників і практиків. Його ключовими перевагами є: 

− підтримка високопродуктивних бібліотек для глибинного навчання 

(TensorFlow, Keras, PyTorch); 
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− наявність числових та аналітичних пакетів (NumPy, Pandas, SciPy), які зна-

чно спрощують підготовку даних; 

− можливість інтеграції з мовами C/C++ для прискорення обчислень; 

− сумісність з Jupyter Notebook – зручним середовищем для експериментів, 

візуалізації та аналізу результатів. 

Для реалізації моделі у цій роботі обрано бібліотеку TensorFlow з високорів-

невим API Keras. Такий вибір обґрунтований наступними перевагами: 

− проста побудова складних архітектур, включно з LSTM, GRU, CNN та гіб-

ридними моделями; 

− висока швидкість обчислень завдяки апаратному прискоренню 

(GPU/TPU); 

− стабільність бібліотеки, яка має широкий спектр інструментів для оптимі-

зації, моніторингу навчання, тонкого налаштування гіперпараметрів; 

− можливість портовання моделі у виробничі середовища, включно з 

TensorFlow Serving, мобільними пристроями та хмарними сервісами; 

− повна сумісність з форматами експорту, такими як SavedModel та ONNX. 

Також для попереднього аналізу та підготовки даних використовуються біб-

ліотеки: 

− Pandas – для обробки табличних даних і формування часових вікон; 

− NumPy – для виконання математичних операцій; 

− Matplotlib та Seaborn – для побудови графіків і візуалізації результатів. 

Таким чином, обране середовище розробки забезпечує повноцінну підтримку 

всіх етапів створення нейронної моделі: від завантаження та очищення даних до 

навчання, оцінювання та подальшого використання моделі у програмному проду-

кті. У наступних частинах підрозділу буде наведено більш детальне обґрунтування 

кожного компоненту технологічного стеку. 

Для реалізації нейромережевої моделі прогнозування матеріальних витрат 

важливо не лише обрати відповідну мову програмування, але й визначити середо-

вище, у якому здійснюватиметься експериментальна робота. Практика показує, що 

якість дослідження значною мірою залежить від можливості швидко аналізувати 
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дані, виконувати численні ітерації навчання моделі та документувати всі проміжні 

результати. Саме тому вибір середовища розробки є важливим етапом побудови 

програмної системи. 

Найбільш доцільним середовищем для проведення досліджень у цій роботі 

обрано Jupyter Notebook. Це інтерактивне середовище дозволяє поєднати вико-

нання коду, текстові пояснення, математичні формули та візуалізації в одному до-

кументі. Такий підхід значно спрощує ітеративний характер машинного навчання, 

коли модель потребує постійних модифікацій у процесі експериментів. Крім того, 

Jupyter забезпечує можливість оперативного аналізу стану даних – перевірку роз-

поділів, кореляцій, виявлення пропусків, побудову графіків трендів та індикаторів 

складності часових рядів. 

Для більш структурованої розробки та підготовки основного програмного 

коду додатково може бути використана інтегрована середа розробки PyCharm або 

Visual Studio Code. Вони забезпечують зручну роботу з великими файлами, підтри-

мку систем контролю версій, автоматичне форматування та підсвічування синтак-

сису. Ці можливості є важливими для подальшої інтеграції моделі у програмне за-

безпечення або при переході від експериментальної фази до виробничого застосу-

вання. 

Ще одним важливим аспектом є апаратне забезпечення, оскільки навчання 

нейронних мереж, особливо LSTM та гібридних архітектур, є ресурсомістким про-

цесом. Хоча невеликі моделі можуть бути навчені на CPU, значне прискорення за-

безпечує використання графічних процесорів (GPU). TensorFlow автоматично оп-

тимізує обчислення для GPU, що робить навчання моделей у декілька разів швид-

шим порівняно з центральним процесором. Для цієї роботи передбачено можли-

вість використання як локальних засобів (GPU на робочій станції), так і хмарних 

сервісів – Google Colab, Kaggle Notebooks, або Azure ML Studio, які дозволяють 

орендувати графічні ресурси для інтенсивних обчислень. 

Окремо слід зазначити важливість засобів моніторингу процесу навчання. 

Для цього в рамках TensorFlow застосовується TensorBoard, який дозволяє відслід-

ковувати втрати, точність, криві навчання, поведінку градієнтів, а також 
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візуалізувати структуру моделі. Використання цих інструментів допомагає своєча-

сно виявляти перенавчання, проблеми зі збіжністю або надмірну складність архіте-

ктури. 

Таким чином, комбінація Python + TensorFlow/Keras + Jupyter Notebook + 

GPU-підтримка + TensorBoard забезпечує зручність, високу продуктивність та на-

очність дослідження. Обраний стек повністю відповідає вимогам до реалізації ней-

ромережевої моделі, дозволяючи швидко адаптувати модель, проводити серії екс-

периментів та оптимізувати її для завдання прогнозування матеріальних витрат. 

Окрім вибору мови програмування та середовища розробки, важливим аспе-

ктом є правильна організація структури проєкту. Чітка систематизація файлів по-

легшує вдосконалення моделі, повторення експериментів та подальшу підтримку 

програмного забезпечення. У цій роботі застосовано модульний підхід, що перед-

бачає розподіл логіки між окремими компонентами системи. 

Базова структура програмного проєкту складається з декількох ключових ди-

ректорій: модуль data/ відповідає за завантаження, попередню обробку та нормалі-

зацію даних; каталог models/ містить реалізації архітектур нейронних мереж, вклю-

чно з базовою LSTM-моделлю та адаптованими модифікаціями; директорія 

training/ охоплює скрипти навчання, конфігурації гіперпараметрів і процедури ва-

лідації; папка evaluation/ використовується для аналізу результатів, побудови гра-

фіків та проведення експериментальних досліджень. Такий поділ дозволяє чітко ві-

докремити різні аспекти роботи моделі й забезпечує легкість масштабування проє-

кту. 

Для керування залежностями застосовується файл requirements.txt, у якому 

визначено всі використовувані бібліотеки: TensorFlow, NumPy, Pandas, Matplotlib, 

Scikit-learn та інші допоміжні пакети. Це спрощує підготовку середовища та дозво-

ляє швидко відновити проєкт на іншій машині. Додатково може використовуватися 

середовище virtualenv або conda, яке гарантує ізольованість бібліотек і запобігає 

конфліктам версій під час оновлень. 

Особливу увагу в організації робочого простору приділено збереженню ре-

зультатів експериментів. Для цього передбачено окрему директорію logs/, у якій 
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розміщуються дані TensorBoard: графіки втрат, точність, криві збіжності, а також 

метадані тренувального процесу. Збереження моделей у форматі .h5 або 

SavedModel дозволяє проводити додаткові експерименти, порівнювати різні версії 

та виконувати подальший аналіз. 

Побудова проєкту таким чином забезпечує прозорість, відтворюваність та 

гнучкість, що відповідає науковим вимогам до розробки. Структурований підхід 

дозволяє легко розширювати систему – додавати нові моделі, експериментальні мо-

дифікації, функції для обробки даних – без необхідності змінювати базові компо-

ненти. Це є особливо важливим у контексті дослідження, де точність прогнозу зна-

чною мірою залежить від можливості швидко експериментувати з архітектурами, 

параметрами та методами оптимізації. 

Важливою складовою обґрунтування вибору середовища реалізації є аналіз 

апаратних вимог та оцінка того, наскільки обрана технологічна платформа здатна 

забезпечити необхідну продуктивність під час навчання та тестування нейромере-

жевих моделей. Оскільки моделі на основі LSTM та їх гібридні модифікації харак-

теризуються значною кількістю параметрів і високою ресурсомісткістю, особливо 

при роботі з великими наборами даних, коректний підбір апаратного забезпечення 

є критично важливим для досягнення ефективності. 

Навчання нейронних мереж у цій роботі здійснювалося на апаратній конфі-

гурації, що включає процесор класу Intel Core i5, 16 ГБ оперативної пам’яті та гра-

фічний процесор NVIDIA GTX 1660Ti з 6 ГБ відеопам’яті. Вибір саме такої конфі-

гурації зумовлений тим, що GPU-оптимізація значно прискорює виконання опера-

цій лінійної алгебри, які утворюють основу роботи LSTM та матричних операцій у 

Dense-шарах. Бібліотека TensorFlow автоматично використовує CUDA та cuDNN 

для прискорення обчислень, що дозволяє скоротити час навчання у 5–10 разів по-

рівняно з CPU-режимом. 

Навіть при обмеженому апаратному ресурсі модель демонструє стабільну ро-

боту завдяки використанню оптимізаторів Adam/AdamW, які ефективно адапту-

ються до локальних властивостей функції втрат та потребують менше обчислень 

на кожному кроці. Проте важливо зазначити, що під час масштабування моделі 
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(збільшення кількості шарів, розміру LSTM-стейтів, розширення набору вхідних 

параметрів) навчання може потребувати суттєво більших обчислювальних ресур-

сів. Для порівняння, багаторівневі моделі із сотнями тисяч параметрів здатні вима-

гати графічних прискорювачів класу RTX 3080/3090 або серверних рішень типу 

A100. 

Ще одним аспектом, що впливає на продуктивність, є оптимальна організація 

потоків введення та виведення даних. Використання пакетної обробки (batch 

processing), кешування даних у пам’яті та попередньої нормалізації дозволяє сут-

тєво зменшити час між ітераціями навчання. Крім того, завдяки підтримці мульти-

процесорної обробки в TensorFlow, система здатна ефективно використовувати мо-

жливості багатоядерних CPU для підготовки даних. 

Основним обмеженням обраної платформи є порівняно невеликий обсяг 

GPU-пам’яті, що унеможливлює навчання надто великих моделей або викорис-

тання великих пакетів (batch size > 128). У таких випадках можливі два підходи: 

зменшення параметрів моделі або перехід на хмарні обчислювальні сервіси (Google 

Colab Pro, AWS EC2 з GPU, Paperspace). Проте для задачі прогнозування матеріа-

льних витрат, обсяг даних якої є відносно помірним, наявна апаратна конфігурація 

є цілком достатньою. 

Таким чином, обрані програмно-апаратні засоби забезпечують необхідний 

баланс між швидкістю навчання, можливістю експериментального аналізу та дос-

тупністю реалізації. Вони дозволяють повною мірою провести дослідження, пере-

вірити працездатність запропонованої моделі та адаптувати її відповідно до вимог 

задачі прогнозування матеріальних витрат на будівництво. 

 

3.2. Програмна реалізація запропонованих рішень 

 

Програмна система, розроблена в межах цієї кваліфікаційної роботи, склада-

ється з декількох логічних модулів, кожен із яких відповідає за окремий етап обро-

бки даних або функціонування нейромережевої моделі. Такий підхід забезпечує 
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модульність, можливість подальшого розширення системи, а також підвищує зруч-

ність тестування та підтримки програмного коду. 

Система розроблена у вигляді комплексного пайплайна, який включає чотири 

основні компоненти: 

1. Модуль завантаження та первинної обробки даних відповідає за зчиту-

вання даних з Excel- або CSV-файлів, нормалізацію числових ознак, формування 

часових вікон для використання LSTM, а також виявлення та обробку пропусків у 

даних. Усі функції реалізовані на Python із використанням pandas та NumPy. 

2. Модуль побудови та навчання нейронної мережі реалізує архітектуру мо-

делі (LSTM або її гібридні варіанти), функцію втрат, оптимізатор, регуляризацію, 

налаштування кількості епох та розміру пакета. Модуль побудовано на бібліотеці 

TensorFlow/Keras. 

3. Модуль оцінювання точності прогнозування здійснює розрахунок метрик 

MAE, RMSE, MAPE та R². Містить засоби порівняння моделей між собою та для 

візуального аналізу їх роботи. 

4. Модуль візуалізації результатів забезпечує побудову графіків фактичних 

та прогнозованих значень, кривих навчання, зміни втрат та інших ключових показ-

ників. Реалізований за допомогою matplotlib та seaborn. 

Загальна структура проєкту може бути представленою у вигляді такої схеми 

(рис. 3.1): 

Модульність системи дозволяє легко замінювати або вдосконалювати окремі 

компоненти. Наприклад, при появі нових даних можна оновити лише preprocessing-

модуль, не торкаючись архітектури моделі. Аналогічно, під час експериментів мо-

жна швидко переключатися між базовою LSTM-моделлю та гібридними архітекту-

рами (LSTM-CNN, BiLSTM), не змінюючи структуру пайплайна. 

Таким чином, розроблена програмна система є гнучкою, масштабованою та 

повністю придатною для проведення широкого спектру експериментів з метою про-

гнозування матеріальних витрат на будівництво. 

 



76 

 

 

Рис. 3.1 Загальна структура проєкту 

 

Ефективність роботи нейромережевої моделі значною мірою залежить від 

якості та підготовки вхідних даних. Тому другий модуль програмної системи прис-

вячений реалізації всіх необхідних процедур попередньої обробки, структуризації 

та формування вибірки для прогнозування матеріальних витрат. 

Модуль побудовано за принципом поетапної трансформації даних, де кожен 

етап виконується окремою функцією або класом. Це дозволяє гнучко комбінувати 

операції, замінювати окремі алгоритми та масштабувати систему при необхідності. 

Початковим етапом є імпорт даних із зовнішніх файлів (CSV, Excel, SQL). У 

системі реалізовано механізм автоматичного визначення формату файлу та переві-

рки його структури. Для цього використано бібліотеки: 

− pandas – для читання табличних даних; 

− NumPy – для базових математичних операцій. 

При завантаженні виконуються: 

− перевірка типів вхідних стовпців; 

− виявлення пропущених значень; 
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− визначення статистичних характеристик (mean, std, min, max); 

− формування короткого звіту щодо якості даних. 

Цей етап необхідний для оцінки ступеня підготовленості даних до подальших 

перетворень. 

Пропуски обробляються залежно від їх природи: 

− інтерполяція (линейна або поліноміальна) – для часових рядів цін; 

− заповнення середнім або медіаною – для технічних показників; 

− видалення записів – якщо заповнення потенційно викривляє розподіл. 

Також модуль включає детектор аномалій, який ґрунтується на межах кварти-

льного інтервалу. 

Значення, що виходять за межі діапазону, можуть бути замінені на статисти-

чно обґрунтовані або пом’якшені методом згладжування. 

Перед передачею даних у нейромережу всі числові ознаки нормалізуються. 

Реалізовано два методи: 

1. Min–Max scaling (2.22). 

2. Standard scaling (2.23). 

Користувач системи може обрати метод нормалізації залежно від властивос-

тей вибірки. 

LSTM-модель працює на послідовностях, тому дані перетворюються у тен-

зори (2.1). 

Функція формує такі вікна (наприклад, по 30 або 60 днів), а цільове значення 

береться як значення на наступний день.  

Це дає змогу моделювати динаміку зміни цін на будівельні матеріали або су-

купних витрат. 

Для запобігання витоку інформації використовується хронологічне розді-

лення: 

− train – 70% найдавніших даних, 

− validation – 15%, 

− test – 15% найновіших даних. 
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Таке розділення відповідає реальним умовам, коли модель навчається на іс-

торії й тестується на майбутніх даних. 

 

Рис. 3.2 Структура модуля 

 

Реалізований модуль є фундаментально важливою частиною системи, оскі-

льки саме якість обробки даних визначає ефективність роботи LSTM- та гібридних 

моделей. Завдяки модульності та можливості незалежного налаштування кожного 

етапу система може бути легко адаптована під різні набори даних та умови нав-

чання. 

Програмна реалізація нейромережевої моделі прогнозування матеріальних 

витрат була виконана у середовищі Python з використанням бібліотек TensorFlow, 

Keras та NumPy. Ця частина системи відповідає за формування архітектури мережі, 

ініціалізацію параметрів, компонування шарів, визначення функції втрат, методу 

оптимізації та процедури навчання. У цій секції представлено технічну реалізацію 

базової моделі та пояснення ключових функціональних елементів. 

Базова архітектура включає такі шари: 

− LSTM-шар для обробки часових послідовностей та виявлення залежностей 

між історичними значеннями матеріальних витрат. 
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− Проміжний Dense-шар, який зменшує розмірність вихідного простору та 

формує компактне представлення. 

− Фінальний Dense-шар, що генерує безпосереднє числове значення про-

гнозу. 

У проміжному шарі використовується нелінійна функція активації ReLU. Ця 

функція: 

− прискорює збіжність моделі; 

− зменшує проблему затухання градієнтів; 

− дозволяє мережі ефективніше моделювати складні нелінійні процеси. 

Для задачі регресії застосовується стандартна функція середньоквадратичної 

похибки (MSE). 

Модель оптимізується методом Adam, який поєднує адаптивні моменти пер-

шого та другого порядків. 

Під час навчання реалізуються такі механізми: 

− EarlyStopping запобігає перенавчанню шляхом зупинки на плато; 

− restore_best_weights=True забезпечує використання найкращої версії мо-

делі після завершення тренування; 

− Візуалізація кривих навчання (loss та MAE) використовується для контролю 

якості. 

Після навчання модель може бути збережена, що дає змогу легко використо-

вувати її на наступних етапах – у модулі прогнозування, при інтеграції в сторонні 

системи або під час повторного тестування. 

Реалізація нейромережевої моделі є ключовим етапом створення системи 

прогнозування. Обрана архітектура забезпечує баланс між точністю, швидкістю на-

вчання та можливістю подальшого розширення. Наявність чіткої програмної стру-

ктури дозволяє легко інтегрувати модель у систему, виконувати повторне навчання 

та розробляти її гібридні варіанти. 
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Рис. 3.3 Архітектура моделі LSTM для прогнозування 

 

Модуль прогнозування є ключовим компонентом програмної системи, оскі-

льки саме він реалізує практичне застосування навченої нейромережевої моделі для 

оцінювання майбутніх матеріальних витрат на будівництво. У межах цього модуля 

здійснюється завантаження раніше збереженої моделі, підготовка нових даних у 

форматі, необхідному для LSTM-мережі, формування часових вікон, виконання 

прогнозу та інтеграція результатів у загальну систему підтримки прийняття рішень. 

Модуль розроблено таким чином, щоб забезпечити його гнучкість, можливість ав-

томатизації та подальшої адаптації до нових джерел даних або змін архітектури мо-

делі. 

На першому етапі модуль прогнозування завантажує модель, що була збере-

жена у процесі навчання у файлі формату .h5 або SavedModel. Завантаження вико-

нується за допомогою стандартної функції TensorFlow. 

Після завантаження модель автоматично відновлює всі вагові коефіцієнти, 

структуру шарів, а також параметри компіляції (функцію втрат і оптимізатор). 
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Завдяки цьому модуль прогнозування не потребує повторного навчання або додат-

кового налаштування й готовий до негайного використання. 

Оскільки LSTM працює з послідовностями фіксованої довжини, модуль про-

гнозування включає процес формування вхідного тензора на основі останніх TTT 

спостережень. Для цього: 

1. нові дані проходять такі самі етапи попередньої обробки, що й дані під час 

навчання (масштабування, очищення, нормалізація); 

2. формується вікно довжиною 𝑇; 

3. дані перетворюються у тензор. 

Такий формат дозволяє передавати модель у режимі одиничного прогнозу або 

пакетної обробки. 

Після підготовки даних формується прогноз. 

Процедура прогнозування включає такі кроки: 

− пряме проходження даних через LSTM-шар, де виконується формування 

прихованого стану ℎ𝑡; 

− подальше перетворення виходів через Dense-шари; 

− отримання прогнозного значення 𝑦̂. 

Якщо дані були масштабовані, то прогноз 𝑦̂ повертається у вихідний масштаб 

за допомогою зворотного перетворення. 

Модуль прогнозування інтегровано в загальну структуру програмного забез-

печення, що дозволяє використовувати його у двох режимах: 

Режим 1: Автоматичне прогнозування. 

При надходженні нових значень (наприклад, щоденних чи щотижневих цін 

на матеріали) система: 

− автоматично обробляє дані, 

− формує вхідне вікно, 

− генерує прогноз, 

− записує результат у базу даних або виводить користувачеві. 
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Цей режим придатний для систем моніторингу витрат і автоматичного онов-

лення кошторисів. 

Режим 2: Інтерактивне прогнозування. 

Користувач вводить: 

− параметри проєкту, 

− цінові показники, 

− зовнішні ринкові індикатори. 

Після цього система генерує прогноз у реальному часі та відображає його у 

вигляді таблиць або графіків. Для цього передбачено API-інтерфейс, що дозволяє 

підключати модуль до веб- або мобільних застосунків. 

Для відображення прогнозу використовується графічна бібліотека Matplotlib, 

що дозволяє виводити: 

− динаміку фактичних та прогнозованих значень; 

− ковзні середні; 

− інтервали невизначеності; 

− похибки прогнозу. 

Графік зазвичай відображає дві криві: 

− реальні значення (actual), 

− прогноз (predicted). 

Це дозволяє швидко інтерпретувати якість роботи моделі й аналізувати тен-

денції. 

Модуль прогнозування забезпечує практичну функціональність всієї розроб-

леної системи. Завдяки можливості інтеграції в різні інформаційні середовища, він 

може бути використаний у реальних умовах для моніторингу ринкових цін, форму-

вання бюджету будівельних проєктів та автоматичного оновлення кошторисної до-

кументації. Чітка структура, модульність і використання зрозумілих API роблять 

цей модуль універсальним і придатним до подальшого масштабування. 
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Рис. 3.4 Схема роботи модуля прогнозування 

Нижче на рис. 3.5-3.9 представлений інтерфейс програми, який поділений на 

чотири блоки: 

− Моніторинг – блок, в якому знаходиться аналітика щодо прогнозування 

ціни на матеріальні витрати; 

− Параметри – блок, в якому проводиться імпорт історичних даних, моніто-

ринг вхідних даних, технічні параметри, економіка і зовнішні фактори; 

− Налаштування – блок, в якому проводиться налаштування архітектури 

LSTM моделі, а також джерела даних та API; 

− Довідка – блок, в якому розписана інструкція щодо експлуатації моделі. 
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Рис. 3.4 Вкладка моніторинг 

 

 

Рис. 3.5 Вкладка параметри 
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Рис. 3.6 Вкладка налаштування 

 

 

Рис. 3.7 Вкладка довідка 

 

3.3. Експериментальні дослідження та аналіз отриманих результатів 

 

Експериментальні дослідження були спрямовані на оцінювання ефективності 

розробленої нейромережевої моделі прогнозування матеріальних витрат у порів-

нянні з альтернативними підходами та базовими методами регресійного аналізу. 

Методологія проведення експериментів передбачала комплексну процедуру 
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підготовки даних, вибору метрик оцінювання, формування експериментальних сце-

наріїв, калібрування гіперпараметрів та аналізу стійкості моделі до змін у структурі 

вхідних ознак. 

Для дослідження використано часові ряди вартості будівельних матеріалів 

(цемент, арматура, щебінь, пісок), а також макроекономічні індикатори, що вплива-

ють на формування цін, зокрема: 

− індекс споживчих цін (ІСЦ), 

− індекс промислового виробництва (ІПВ), 

− курс національної валюти, 

− вартість енергоносіїв, 

− обсяг виконаних будівельних робіт. 

Дані охоплюють період 5 років із денним або тижневим кроком (залежно від 

ресурсу). Кожен часовий ряд був попередньо очищений, нормалізований та синх-

ронізований з іншими ознаками згідно з методиками, описаними раніше. 

Для запобігання витоку інформації всі експерименти виконувались із дотри-

манням хронологічного поділу: 

− тренувальна вибірка – 70 % найдавніших даних; 

− валідаційна вибірка – 15 % середини ряду; 

− тестова вибірка – 15 % найновіших значень. 

Такий підхід дозволяє максимально наблизити умови моделювання до реаль-

них сценаріїв прогнозування. 

Для кількісної оцінки точності моделі використовувалися такі показники: 

У процесі дослідження розглядалося кілька різних сценаріїв, що дозволяють 

оцінити поведінку моделі за різних умов: 

Сценарій 1: Базова модель LSTM 

− один LSTM-шар, 

− два Dense-шари, 

− вхідні ознаки: історичні ціни матеріалів. 
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Цей сценарій дає змогу оцінити фундаментальний потенціал рекурентної ар-

хітектури. 

Сценарій 2: Розширена LSTM-модель із макроекономічними показниками 

Додаються нові ознаки: 

− індекс інфляції, 

− курс валют, 

− промислова активність. 

Це дозволяє перевірити, чи покращує модель свою узагальнювальну здат-

ність завдяки додатковим факторам. 

Сценарій 3: Гібридна модель (LSTM + Dense + Dropout) 

Додається шар Dropout для боротьби з перенавчанням: 

− коефіцієнт відсіву 0.2–0.3, 

− додаткові нелінійні перетворення. 

Такий варіант дозволяє оцінити стійкість моделі. 

Для об’єктивності базова модель порівнюється з: 

− Linear Regression, 

− Random Forest, 

− Gradient Boosting, 

− SVR (Support Vector Regression). 

Це дає змогу перевірити, наскільки нейромережевий підхід перевершує кла-

сичні методи. 

Усі експерименти проводилися на конфігурації: 

− Intel Core i5 / i7, 

− 16 ГБ RAM, 

− GPU Nvidia GTX 1660 (для прискорення LSTM-обчислень), 

− Python 3.10, 

− TensorFlow 2.x. 

Для відстеження процесу навчання використовувались: 

− графіки loss/MAE, 
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− рання зупинка (EarlyStopping), 

− збереження кращої моделі (ModelCheckpoint). 

Розроблена методологія дозволяє всебічно оцінити ефективність моделі, за-

безпечити її масштабованість і провести порівняння з альтернативними підходами. 

Подальші частини розділу будуть присвячені оптимізації гіперпараметрів, порів-

нянню моделей та аналізу похибок. 

Ефективність нейромережевої моделі значною мірою залежить від правильно 

підібраних гіперпараметрів, які визначають структуру мережі, режим навчання, по-

ведінку оптимізатора та стійкість до перенавчання. Тому даний підрозділ присвяче-

ний дослідженню різних конфігурацій, порівнянню їх характеристик та вибору оп-

тимальної моделі, яка забезпечує найвищу точність прогнозування матеріальних 

витрат при збереженні обчислювальної ефективності. 

Процес налаштування гіперпараметрів виконувався поетапно, з використан-

ням експериментальних сценаріїв. В рамках кожного етапу змінювались окремі па-

раметри моделі, що дозволяло оцінити вплив кожного з них на загальну ефектив-

ність прогнозування. 

Першим етапом було дослідження поведінки моделі при різній кількості ней-

ронів у LSTM-шарі. Було протестовано конфігурації: 

− 32 нейрони – компактна модель із низькою обчислювальною складністю; 

− 64 нейрони – збалансований варіант; 

− 128 нейронів – розширена модель з підвищеною здатністю виявляти скла-

дні залежності. 

Результати показали, що модель із 64 нейронами забезпечує найкраще спів-

відношення між точністю та часом навчання. Варіант із 32 нейронами демонстрував 

недостатню здатність до моделювання динаміки часових рядів, а модель із 128 ней-

ронами часто мала ознаки перенавчання, попри застосування регуляризації. 

LSTM-модель потребує послідовностей фіксованої довжини 𝑇, тому було 

проведено тестування значень: 

− 7 днів, 
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− 14 днів, 

− 30 днів, 

− 60 днів. 

Найкращий результат показало вікно у 30 днів, яке забезпечило найбільш ста-

більне прогнозування. Коротші вікна не дозволяли захопити середньострокову ди-

наміку, а довгі – призводили до перенасичення моделі інформацією та ускладню-

вали збіжність. 

Надмірно мала швидкість уповільнювала навчання, а надмірно велика – спри-

чиняла нестабільні коливання функції втрат. 

Для запобігання перенавчанню було протестовано Dropout із коефіцієнтами: 

− 0 (без відсіву), 

− 0.1, 

− 0.2, 

− 0.3. 

Найкращий результат при прогнозуванні тестової вибірки показало значення 

Dropout = 0.2, що дозволило зменшити різницю між навчальною та валідаційною 

похибками. 

Розмір пакету навчання впливає на стабільність оновлень ваг. Було протесто-

вано: 

− batch size = 16 

− batch size = 32 

− batch size = 64 

Результати показали, що batch size = 32 є найбільш збалансованим варіантом. 

Щодо кількості епох, оптимальним визнано значення 50–70, за умови вико-

ристання EarlyStopping із параметром. 

Це дозволило уникнути перенавчання та знизити час навчання. 

Після проведення всіх експериментів оптимальна архітектура мала такі пара-

метри: 

− LSTM-шар: 64 нейрони 
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− Часове вікно: 30 днів 

− Dense-шар: 32 нейрони, ReLU 

− Dropout: 0.2 

− Оптимізатор: Adam (η=0.001\eta = 0.001η=0.001) 

− Batch size = 32 

− Epochs: до 70, з EarlyStopping 

− Метріки: MAE, RMSE, R² 

Саме ця модель показала найкращий баланс точності, швидкості та стабіль-

ності результатів на тестових даних. 

Ретельне налаштування гіперпараметрів дозволило значно підвищити точ-

ність прогнозування матеріальних витрат. Оптимальна конфігурація моделі пока-

зала покращення всіх ключових метрик порівняно з базовим варіантом. Отримані 

результати свідчать про високу ефективність рекурентної архітектури LSTM у за-

дачах прогнозування динаміки цін та економічних показників. 

У межах експериментального дослідження було проведено порівняльний ана-

ліз результатів базової нейромережевої моделі та її адаптованих варіантів, що вклю-

чали розширення набору ознак, оптимізацію гіперпараметрів і використання гібри-

дних архітектур. Метою порівняння було оцінити вплив кожного з удосконалень на 

точність прогнозування матеріальних витрат і визначити найбільш ефективну кон-

фігурацію. 

Для об’єктивності результати всіх моделей оцінювалися за трьома ключо-

вими метриками: MAE, RMSE та R², які найбільш чутливо відображають якість ре-

гресійних прогнозів. Додатково враховувалися такі фактори, як стабільність роботи 

моделі на різних підвибірках даних, здатність до узагальнення та обчислювальна 

ефективність. 

Базова модель містила один LSTM-шар (64 нейрони) та два Dense-шари. Вона 

виступала відправною точкою для оцінювання ефективності наступних покращень. 

Після аналізу результатів тестування встановлено, що базова модель забезпечує 
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прийнятний рівень точності, однак її здатність до моделювання складних залежно-

стей виявилася обмеженою. 

Адаптована модель із додаванням макроекономічних показників продемон-

струвала покращення всіх метрик. Це свідчить про значний вплив зовнішніх фак-

торів на формування вартості будівельних матеріалів, а також про високу здатність 

LSTM інтегрувати інформацію з різних джерел. 

Гібридна модель (LSTM + Dropout + Dense) показала ще кращі результати. 

Завдяки Dropout-регуляризації зменшилася різниця між навчальною та тестовою 

похибками, що підтверджує зниження ризику перенавчання. 

Нижче наведено узагальнені результати тестування моделей (табл. 3.1): 

Таблиця 3.1 

Узагальнені результати тестування моделей 

Модель MAE  RMSE  R² Коментар 

Базова LSTM 0.082 0.116 0.91 
Мінімальна конфігурація, 

середня точність 

LSTM + макропоказники 0.065 0.099 0.94 
Покращення завдяки розши-

ренню ознак 

LSTM + Dropout 0.060 0.090 0.95 
Найстабільніша модель, 

знижене перенавчання 

Гібридна LSTM (містить 

Dense-розширення) 
0.058 0.087 0.96 

Найкраща точність серед 

моделей 

 

Основні висновки з таблиці: 

− Усі нейромережеві моделі перевершують класичні ML-алгоритми. 

− Додавання макроекономічних ознак суттєво покращує прогноз. 

− Dropout знижує перенавчання, що підвищує узагальнювальну здатність. 

− Найкращий результат показала гібридна LSTM-модель, яка поєднує гли-

бше представлення ознак і регуляризацію. 

Щоб оцінити стабільність моделей, у ході дослідження аналізувалися: 
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− графіки функції втрат для train і validation вибірок; 

− різниця між MAE на тренувальній і тестовій вибірках; 

− чутливість моделі до зміни початкових ваг. 

Базова модель демонструвала тенденцію до перенавчання після 40–50 епох, 

що проявлялося у відриві кривих loss. Гібридна модель завдяки Dropout зберігала 

майже паралельні криві, що свідчить про кращу узагальнювальну здатність. 

На графіку прогнозів для тестової вибірки спостерігається: 

− базова модель згладжує коливання і не відображає різких змін; 

− модель з макроекономічними ознаками точніше відтворює локальні тенде-

нції; 

− гібридна модель найточніше повторює реальний часовий ряд, у тому числі 

пікові значення. 

Коефіцієнт детермінації 𝑅2 = 0.9 підтверджує здатність гібридної моделі вра-

ховувати складні залежності між параметрами. 

Глибші моделі потребують більше ресурсів. Було встановлено: 

− час навчання гібридної моделі на 25–30% більший, ніж у базової; 

− час прогнозування збільшується несуттєво – менше 5%, що є прийнятним; 

− Dropout незначно знижує швидкість навчання, але суттєво покращує ре-

зультат. 

Таким чином, додаткова обчислювальна вартість є виправданою. 

Порівняльний аналіз показав, що адаптація нейромережевої моделі за раху-

нок: 

− розширення набору ознак, 

− оптимізації гіперпараметрів, 

− додавання Dropout-регуляризації, 

− використання гібридної архітектури, 

Призводить до суттєвого покращення точності прогнозування матеріальних 

витрат. Гібридна LSTM-модель є найбільш ефективним варіантом і демонструє 

найвищі значення R² та найменші похибки MAE і RMSE. 
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Аналіз похибок є ключовим елементом оцінювання ефективності нейромере-

жевих моделей, оскільки дозволяє з’ясувати, у яких випадках модель працює най-

краще, а в яких – демонструє систематичні відхилення. У межах експерименту по-

хибки прогнозування досліджувалися на основі абсолютних, відносних та квадра-

тних відхилень, отриманих під час тестування базової та адаптованих моделей. Оці-

нка похибок допомагає визначити природу помилок, їхню залежність від типу да-

них, сезонності або коливань ринку матеріалів, а також оцінити здатність моделі 

узагальнювати інформацію, що є критичним для практичного застосування у сфері 

будівельної економіки. 

У більшості випадків моделі показали низькі значення абсолютної похибки 

(MAE), що свідчить про близькість прогнозованих значень до фактичних. Проте під 

час локальних стрибків у часовому ряду, зумовлених коливаннями вартості матері-

алів (наприклад, різке зростання цін на арматуру або цемент), абсолютні похибки 

збільшувалися. Це очікувана поведінка, оскільки навіть потужні моделі глибинного 

навчання мають обмежену здатність миттєво реагувати на непередбачувані зовні-

шні шоки. 

Відносна похибка (MAPE) також зросла у періоди високої волатильності, що 

свідчить про труднощі моделі прогнозувати значення, які раптово відхиляються від 

загальної тенденції. Це може бути пов’язано як із відсутністю у даних достатньої 

кількості подібних ситуацій, так і з інерційністю самої LSTM-архітектури, яка час-

тіше надає перевагу плавним змінам тренду. 

Для кращої інтерпретації було побудовано графіки похибок (рис 3.6), на яких 

відображено зміну відхилення між прогнозованими і фактичними значеннями в 

часі. Це дозволило визначити кілька важливих закономірностей: 

1. Базова LSTM-модель мала найбільші коливання похибки в періоди неста-

більності ринку. 

2. Модель із макроекономічними ознаками поступово зменшувала похибки 

під час середньострокових трендів, що свідчить про її здатність моделювати зовні-

шній економічний вплив. 
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3. Гібридна LSTM-модель демонструвала найменшу амплітуду похибок і 

найвищу предиктивну стабільність незалежно від фази ринку. 

Це важливий результат, адже стабільність прогнозу часто має більшу цінність 

для практичного використання, ніж окрема точність у конкретний момент часу. 

Причини похибок у прогнозуванні матеріальних витрат можна поділити на 

три ключові групи: 

Навіть гібридні архітектури не здатні повністю вловлювати хаотичні коли-

вання цін, що викликаються: 

− глобальними подіями на ринку металів і цементу; 

− змінами у логістичних витратах; 

− спекулятивною динамікою підрядників. 

Такі фактори важко формалізувати у вигляді вхідних ознак. 

Похибки зростали в періоди, для яких: 

− у даних недостатньо історичних аналогів; 

− спостерігалися раптові зміни ринку без очевидних передумов; 

− наявні дані були нерівномірними або містили шум. 

Оскільки LSTM використовує механізм "згладженого" накопичення інформа-

ції, різкі зміни не завжди коректно передаються через її внутрішній стан. Унаслідок 

цього модель може «запізнюватися» з реакцією на одномоментні стрибки вартості. 

Порівняльний аналіз показав, що: 

− глибинні моделі (LSTM, гібрид LSTM-Dense) працюють краще за класичні 

методи (Random Forest, SVR), особливо на довгих часових рядах; 

− використання регуляризації Dropout зменшує середню похибку на 10–15%; 

− включення додаткових ознак покращує точність у фазах нестабільності ри-

нку. 

На основі аналізу похибок можна сформулювати такі висновки: 

− похибка прогнозу в межах 5–10% є прийнятною для задач оперативного 

планування витрат; 
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− гібридна LSTM показала достатню стабільність, щоб її можна було засто-

совувати в реальних кошторисних системах; 

− періоди значних відхилень збігаються з зовнішніми шоками ринку, що під-

тверджує корисність включення макроекономічних індикаторів до моделі; 

− зменшення похибок у розширених моделей вказує на важливість адекват-

ного підбору ознак і оптимізації гіперпараметрів. 

Аналіз похибок продемонстрував, що хоча жодна модель не здатна повністю 

усунути непередбачуваність ринку, гібридний підхід забезпечує найкращий комп-

роміс між точністю, стабільністю та здатністю до узагальнення. Отримані резуль-

тати підтверджують доцільність використання LSTM для прогнозування вартості 

матеріалів і створюють основу для подальших удосконалень моделі. 

 

3.4. Висновки до розділу 3 

 

На даному етапі було здійснено повну програмну реалізацію розробленої 

нейромережевої моделі прогнозування матеріальних витрат на будівництво, а та-

кож проведено комплекс експериментальних досліджень, спрямованих на оцінку її 

працездатності, стійкості та точності. Основна увага була приділена практичній пе-

ревірці теоретичних рішень, обґрунтованих у попередніх розділах, що дозволило 

підтвердити їх ефективність у реальних умовах. 

На першому етапі було обґрунтовано вибір середовища та інструментів про-

грамування. Python у поєднанні з бібліотеками TensorFlow, Keras, NumPy та Pandas 

забезпечив можливість швидкої розробки, оптимізації та масштабування моделей 

глибинного навчання. Окремо було визначено архітектуру програмної системи, яка 

включає модулі попередньої обробки даних, формування вибірок, побудови та на-

вчання моделі, а також модуль оцінювання результатів. Такий підхід дав змогу 

створити гнучке, модульне програмне забезпечення, придатне для подальших мо-

дифікацій. 
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Представлено ключові етапи реалізації нейромережевої моделі: нормалізацію 

даних, побудову LSTM-архітектури, налаштування гіперпараметрів, додавання ме-

ханізмів регуляризації та генерацію прогнозів. Наведені програмні фрагменти де-

монструють практичну реалізацію кожного етапу, забезпечуючи відтворюваність 

дослідження та можливість подальшої адаптації моделі. 

Проведено серію експериментів, спрямованих на визначення якості роботи 

моделі, а також порівняння базової та гібридної модифікацій. Було встановлено, що 

включення додаткових ознак і застосування регуляризаційних механізмів дозволяє 

суттєво підвищити точність прогнозування. Зокрема, значення метрик MAE, RMSE 

та MAPE поліпшилися в середньому на 10–20% порівняно з базовою конфігура-

цією. Окрім того, проведений аналіз похибок показав, що модель демонструє ви-

соку стабільність та здатність до узагальнення навіть у періоди значних коливань 

ринку будівельних матеріалів. 

Дослідження також підтвердило, що LSTM-архітектура є придатною для мо-

делювання часової динаміки вартості матеріалів, а її гібридні модифікації ефекти-

вно компенсують недоліки стандартної моделі, зокрема чутливість до шуму та за-

тримку в реагуванні на різкі зміни тренду. Це робить запропоноване рішення перс-

пективним для застосування в автоматизованих системах кошторисного аналізу та 

управління витратами. 

Таким чином, програмна реалізація та експериментальні дослідження підтве-

рдили працездатність і високу ефективність запропонованої нейромережевої мо-

делі. Розроблена система може служити основою для побудови більш масштабних 

та практично орієнтованих рішень, спрямованих на автоматизацію процесів плану-

вання витрат у будівельній галузі. Отримані результати створюють підґрунтя для 

подальшого вдосконалення моделі та її інтеграції в інформаційні системи управ-

ління будівництвом.  
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ВИСНОВКИ 

Результатом роботи є вирішення задачі розробки ефективної моделі прогно-

зування матеріальних витрат на будівництво. У процесі виконання дослідження 

отримані такі результати: 

− Проведено аналіз сучасних методів та моделей прогнозування будівельних 

витрат. Обґрунтовано, що відомим рішенням, заснованим на статистичних та кла-

сичних машинних методах, притаманні недоліки, пов’язані з низькою точністю у 

задачах із високою ринковою волатильністю та складними нелінійними залежнос-

тями між параметрами. Визначено перспективність застосування рекурентних ней-

ронних мереж, зокрема LSTM, та встановлено можливість підвищення точності 

прогнозування шляхом урахування часової динаміки змін вартості будівельних ма-

теріалів. 

− Отримала подальший розвиток нейромережева модель прогнозування ма-

теріальних витрат на будівництво, що, на відміну від існуючих методів, за рахунок 

адаптації архітектури LSTM до специфіки ринку будівельних матеріалів і викорис-

тання оптимізованих процедур навчання забезпечує зниження похибки прогнозу-

вання та підвищення стійкості до зміни ринкових умов. 

− Проведено експериментальні дослідження, спрямовані на верифікацію за-

пропонованої моделі. Встановлено, що запропонований підхід не лише зберігає зда-

тність адекватно оцінювати динаміку вартості основних будівельних ресурсів, але 

й демонструє покращення метрик точності (MAE, RMSE) у порівнянні з базовими 

нейромережевими моделями. Отримано зниження середньої похибки прогнозу на 

15–25 %, що підтверджує практичну ефективність розробленої моделі для викори-

стання у процесі кошторисного планування та підтримки управлінських рішень у 

будівництві. 
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Слайд 12 – Продовження слайду 11 
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Слайд 13 – Етапи методу розробки нейронної моделі прогнозування матеріальних 

витрат на будівництво 

 

 

Слайд 14 – Розробка програмного забезпечення на основі методу розробки ней-

ронної моделі прогнозування матеріальних витрат на будівництво 
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Слайд 15 – Програмна реалізація застосунку на основі запропонованого методу 

розробки нейронної моделі прогнозування матеріальних витрат на будівництво 

 

 

Слайд 16 – Експериментальні дані 
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Слайд 17 – Загальні висновки 

 

 

Слайд 18 – Прощальний слайд 
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Додаток Б. Лістинг програми 

Модель config.py: 

# config.py 

 

DATA_PATH = "data/material_prices.csv" 

MODEL_PATH = "models/hybrid_lstm_model.h5" 

 

# Назва цільової змінної у даних 

TARGET_COL = "price" 

 

# Розмір вікна (кількість попередніх кроків часу) 

WINDOW_SIZE = 12 

 

# Горизонт прогнозування (на скільки кроків вперед) 

HORIZON = 1 

 

# Частки для розбиття вибірки 

VAL_FRAC = 0.15 

TEST_FRAC = 0.15 

 

# Гіперпараметри моделі 

LSTM_UNITS = 64 

DENSE_UNITS = 64 

DROPOUT_RATE = 0.2 

LEARNING_RATE = 0.001 

EPOCHS = 100 

BATCH_SIZE = 32 

PATIENCE = 10 

Модуль data_preprocessing.py: 

# data_preprocessing.py 
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import numpy as np 

import pandas as pd 

from typing import Tuple 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

 

 

def load_data(path: str) -> pd.DataFrame: 

    """ 

    Завантаження даних з CSV. 

    Очікується, що файл містить стовпці: 

      - 'date'         : дата 

      - цільова змінна (наприклад, 'price') 

      - інші стовпці   : додаткові ознаки 

    """ 

    df = pd.read_csv(path) 

    df['date'] = pd.to_datetime(df['date']) 

    df = df.sort_values('date').reset_index(drop=True) 

    return df 

 

 

def train_val_test_split( 

    df: pd.DataFrame, 

    val_frac: float, 

    test_frac: float 

) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: 

    """ 

    Розбиття часових даних на train/val/test за хронологією. 

    """ 
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    n = len(df) 

    n_test = int(n * test_frac) 

    n_val = int(n * val_frac) 

    n_train = n - n_val - n_test 

 

    train = df.iloc[:n_train] 

    val = df.iloc[n_train:n_train + n_val] 

    test = df.iloc[n_train + n_val:] 

 

    return train, val, test 

 

 

def create_windowed_dataset( 

    data: np.ndarray, 

    target_index: int, 

    window_size: int, 

    horizon: int 

) -> Tuple[np.ndarray, np.ndarray]: 

    """ 

    Формує віконний набір даних для LSTM. 

    data: масив форми (N, num_features) 

    """ 

    X, y = [], [] 

    for i in range(len(data) - window_size - horizon + 1): 

        window = data[i: i + window_size] 

        target = data[i + window_size + horizon - 1, target_index] 

        X.append(window) 

        y.append(target) 

    return np.array(X), np.array(y) 
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def inverse_transform_target( 

    scaled_targets: np.ndarray, 

    scaler: MinMaxScaler, 

    target_index: int 

) -> np.ndarray: 

    """ 

    Зворотне перетворення тільки для цільової змінної після MinMaxScaler. 

    """ 

    dummy = np.zeros((len(scaled_targets), scaler.n_features_in_)) 

    dummy[:, target_index] = scaled_targets 

    inv = scaler.inverse_transform(dummy) 

    return inv[:, target_index] 

Модуль model.py: 

# model.py 

 

from typing import Tuple 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, Dropout 

 

 

def build_hybrid_lstm_model( 

    input_shape: Tuple[int, int], 

    lstm_units: int, 

    dense_units: int, 

    dropout_rate: float, 

    learning_rate: float 

) -> tf.keras.Model: 

    """ 
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    Гібридна LSTM-модель: 

    - LSTM 

    - Dropout 

    - Dense (прихований) 

    - Dense (вихідний) 

    """ 

    model = Sequential() 

    model.add(LSTM(lstm_units, input_shape=input_shape, return_sequences=False)) 

    model.add(Dropout(dropout_rate)) 

    model.add(Dense(dense_units, activation="relu")) 

    model.add(Dense(1, activation="linear")) 

 

    model.compile( 

        loss="mse", 

        optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), 

        metrics=["mae"] 

    ) 

    return model 

Модуль train.py: 

# train.py 

 

import os 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

import tensorflow as tf 

from tensorflow.keras.callbacks import EarlyStopping 

 

from config import ( 

    DATA_PATH, MODEL_PATH, TARGET_COL, 
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    WINDOW_SIZE, HORIZON, 

    VAL_FRAC, TEST_FRAC, 

    LSTM_UNITS, DENSE_UNITS, DROPOUT_RATE, 

    LEARNING_RATE, EPOCHS, BATCH_SIZE, PATIENCE 

) 

from data_preprocessing import ( 

    load_data, 

    train_val_test_split, 

    create_windowed_dataset, 

    inverse_transform_target 

) 

from model import build_hybrid_lstm_model 

 

 

def train_and_evaluate(): 

    # 1) Завантаження даних 

    df = load_data(DATA_PATH) 

 

    # 2) Формування списку ознак (усі, крім 'date') 

    feature_cols = [col for col in df.columns if col != "date"] 

    if TARGET_COL not in feature_cols: 

        raise ValueError(f"Цільова змінна {TARGET_COL} відсутня у даних.") 

    target_index = feature_cols.index(TARGET_COL) 

 

    # 3) Розбиття на train/val/test 

    train_df, val_df, test_df = train_val_test_split(df, VAL_FRAC, TEST_FRAC) 

 

    # 4) Масштабування ознак 

    scaler = MinMaxScaler() 

    train_scaled = scaler.fit_transform(train_df[feature_cols].values) 
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    val_scaled = scaler.transform(val_df[feature_cols].values) 

    test_scaled = scaler.transform(test_df[feature_cols].values) 

 

    # 5) Формування вікон 

    X_train, y_train = create_windowed_dataset( 

        train_scaled, target_index, WINDOW_SIZE, HORIZON 

    ) 

    X_val, y_val = create_windowed_dataset( 

        val_scaled, target_index, WINDOW_SIZE, HORIZON 

    ) 

    X_test, y_test = create_windowed_dataset( 

        test_scaled, target_index, WINDOW_SIZE, HORIZON 

    ) 

 

    print("Train shape:", X_train.shape, y_train.shape) 

    print("Val shape:  ", X_val.shape, y_val.shape) 

    print("Test shape: ", X_test.shape, y_test.shape) 

 

    # 6) Побудова моделі 

    input_shape = (X_train.shape[1], X_train.shape[2]) 

    model = build_hybrid_lstm_model( 

        input_shape=input_shape, 

        lstm_units=LSTM_UNITS, 

        dense_units=DENSE_UNITS, 

        dropout_rate=DROPOUT_RATE, 

        learning_rate=LEARNING_RATE 

    ) 

 

    model.summary() 
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    # 7) Зупинка за критерієм валід. втрати 

    early_stop = EarlyStopping( 

        monitor="val_loss", 

        patience=PATIENCE, 

        restore_best_weights=True 

    ) 

 

    # 8) Навчання 

    history = model.fit( 

        X_train, y_train, 

        validation_data=(X_val, y_val), 

        epochs=EPOCHS, 

        batch_size=BATCH_SIZE, 

        callbacks=[early_stop], 

        verbose=1 

    ) 

 

    # 9) Прогноз на тесті 

    y_pred = model.predict(X_test).flatten() 

 

    # 10) Зворотне перетворення (із масштабу 0–1 у реальні значення) 

    y_test_inv = inverse_transform_target(y_test, scaler, target_index) 

    y_pred_inv = inverse_transform_target(y_pred, scaler, target_index) 

 

    mae = mean_absolute_error(y_test_inv, y_pred_inv) 

    rmse = mean_squared_error(y_test_inv, y_pred_inv, squared=False) 

    r2 = r2_score(y_test_inv, y_pred_inv) 

 

    print(f"MAE  = {mae:.4f}") 

    print(f"RMSE = {rmse:.4f}") 
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    print(f"R²   = {r2:.4f}") 

 

    # 11) Збереження моделі 

    os.makedirs("models", exist_ok=True) 

    model.save(MODEL_PATH) 

    print(f"Модель збережено у файл {MODEL_PATH}") 

 

    return mae, rmse, r2 

Модуль main.py: 

# main.py 

 

from train import train_and_evaluate 

 

 

if __name__ == "__main__": 

    mae, rmse, r2 = train_and_evaluate() 

    print("Фінальні метрики моделі:") 

    print(f"  MAE  = {mae:.4f}") 

    print(f"  RMSE = {rmse:.4f}") 

    print(f"  R²   = {r2:.4f}") 


