
SUBSTRING SEARCH BY 
HASH
COURSE WORK #04

Author: prof. Yevhenii Borodavka



PROBLEM STATEMENT

You have a sequence of numbers: X0 = 1;

Xn = (Xn-1*A + B) mod 232; where A = 1103515245 and B = 12345.

In addition, you have a string S length of N, obtained from the sequence

in the next way: Sn = ‘a’ + (Xn>>16) mod 26, where Sn — the ASCII

code of the character.

The start of this string is “aquzzptirwetbkelbhbdqmuhpfybxseirk…”.

You task is to find inside that string a substring with a length K and the

given hash.

Hash = S[0]*P0 + S[1]*P1 + S[2]*P2 + … + S[n-1]*PN-1 mod M.

Use the values for P=1009 and for M=109+7.



PROBLEM STATEMENT

Input. A single string with three numbers divided by spaces:

N (1<=N<=106) — number of characters in the string;

K (1<=K<=N) — number of characters in the substring;

H (0<=H<=M) — hash of the substring.

Output. The substring of length K that has the same hash as given or 0 if

such substring is not found.

Example. N=1000, K=10, H=536637247

Input: 1000 10 536637247

Output: segxxmemfx



RABIN-KARP ALGORITHM

Rabin-Karp algorithm is an algorithm used for searching/matching

patterns in the text using a hash function. Unlike Naive string matching

algorithm, it does not travel through every character in the initial phase

rather it filters the characters that do not match and then performs the

comparison.

A sequence of characters is taken and checked for the possibility of the

presence of the required string. If the possibility is found then, character

matching is performed.

Let us understand the algorithm with the following steps.



RABIN-KARP ALGORITHM

1. Let the text be:

And the string to be searched in the above text be:



RABIN-KARP ALGORITHM

2. Let us assign a numerical value(v)/weight for the characters we will

be using in the problem. Here, we have taken first ten alphabets only

(i.e. A to J).



RABIN-KARP ALGORITHM

3. Let n be the length of the pattern and m be the length of the text.

Here, m = 10 and n = 3.

Let d be the number of characters in the input set. Here, we have taken

input set {A, B, C, ..., J}. So, d = 10. You can assume any suitable value

for d.

4. Let us calculate the hash value of the pattern.



RABIN-KARP ALGORITHM

hash value for pattern(p) = Σ(v * dm-1) mod 13

= ((3 * 102) + (4 * 101) + (4 * 100)) mod 13

= 344 mod 13

= 6

In the calculation above, choose a prime number (here, 13) in such a way

that we can perform all the calculations with single-precision arithmetic.

The reason for calculating the modulus is given below.



RABIN-KARP ALGORITHM

5. Calculate the hash value for the text-window of size m.

For the first window ABC,

hash value for text(t) = Σ(v * dn-1) mod 13

= ((1 * 102) + (2 * 101) + (3 * 100)) mod 13

= 123 mod 13

= 6



RABIN-KARP ALGORITHM

6. Compare the hash value of the pattern with the hash value of the

text. If they match then, character-matching is performed. In the

above examples, the hash value of the first window (i.e. t) matches

with p so, go for character matching between ABC and CDD. Since

they do not match so, go for the next window.



RABIN-KARP ALGORITHM

7. We calculate the hash value of the next window by subtracting the

first term and adding the next term as shown below.

t = ((2 * 102) + (3 * 101) + (3 * 100)) mod 13

= 233 mod 13

= 12

In order to optimize this process, we make use of the previous hash value

in the following way. (h = dn-1 mod 13 = 103-1 mod 13 = 9)

t = ((d * (t - v[removed] * h) + v[added]) mod 13

= ((10 * (6 - 1 * 9) + 3) mod 13

= 12



RABIN-KARP ALGORITHM

8. For BCC, t = 12 (≠6). Therefore, go for the next window. After a few

searches, we will get the match for the window CDD in the text.

The average case and best case complexity of Rabin-Karp algorithm is 

O(m + n) and the worst case complexity is O(m * n).



THANK 
YOU!


