LT
i
£1 SUBSTRING SEARCH BY
N HASH

It

o\

Avuthor: prof. Yevhenii Borodavka

PROBLEM STATEMENT ((
1&

You have a sequence of numbers: X, = 1;
= (X__,*A + B) mod 2°?%; where A = 1103515245 and B = 12345,

In addmon, you have a s’rring S length of N, obtained from the sequence
in the next way: S, = ‘a’ + (X >>16) mod 26, where S. — the ASCII

code of the character.

The start of this string is “aquzzptirwetbkelbhbdgmuhpfybxseirk...”.

You task is to find inside that string a substring with a length K and the
given hash.

Hash = S[O]*P° + S[1]*P! + S[2]*P% + ... + S[n-1]*PN-" mod M.
Use the values for P=1009 and for M=107+7.

\O PROBLEM STATEMENT

Input. A single string with three numbers divided by spaces:

N (1<=N<=10°) — number of characters in the string;
K (1<=K<=N) — number of characters in the substring;
H (0O<=H<=M) — hash of the substring.

Output. The substring of length K that has the same hash as given or O if
such substring is not found.

Example. N=1000, K=10, H=536637247
Input: T000 10 536637247

Qutput: segxxmemfx

LN
\

RABIN-KARP ALGORITHM

Rabin-Karp algorithm is an algorithm used for searching/matching
patterns in the text using a hash function. Unlike Naive string matching
algorithm, it does not travel through every character in the initial phase
rather it filters the characters that do not match and then performs the
comparison.

A sequence of characters is taken and checked for the possibility of the
presence of the required string. If the possibility is found then, character
matching is performed.

Let us understand the algorithm with the following steps.

s
{

l RABIN-KARP ALGORITHM

/\l\j 1. Let the text be:

O

l And the string to be searched in the above text be:

\O RABIN KARP ALGORITHM g

2. Let us assign a numerical value(v)/weight for the characters we will

be using in the problem. Here, we have taken first ten alphabets only
(i.e. A to J).

\O RABIN KARP ALGORITHM g

3. Let n be the length of the pattern and m be the length of the text.
Here, m = 10 and n = 3.

Let d be the number of characters in the input set. Here, we have taken
input set {A, B, C, ..., J}. So, d = 10. You can assume any suitable value

for d.

4. Let us calculate the hash value of the pattern.

\O RABIN KARP ALGORITHM

hash value for pattern(p) = 2(v * d™') mod 13

=((3*10%)+(4*10")+ (4 * 10°) mod 13
= 344 mod 13
=6

In the calculation above, choose a prime number (here, 13) in such a way
that we can perform all the calculations with single-precision arithmetic.

The reason for calculating the modulus is given below.

\O RABIN KARP ALGORITHM

5. Calculate the hash value for the text-window of size m.

O For the first window ABC,

hash value for text(t) = Z(v * d™') mod 13
=((1*10%)+(2*10") + (3 * 10°) mod 13
=123 mod 13
=6

\O RABIN KARP ALGORITHM

6. Compare the hash value of the pattern with the hash value of the

text. If they match then, character-matching is performed. In the
above examples, the hash value of the first window (i.e. 1) matches
with p so, go for character matching between ABC and CDD. Since
they do not match so, go for the next window.

/. We calculate the hash value of the next window by subtracting the
first term and adding the next term as shown below.
t=((2*10%) +(3*10") + (3 * 10°) moed 13
= 233 mod 13
=12
In order to optimize this process, we make use of the previous hash value
in the following way. (h = d™' mod 13 = 10%' mod 13 = 9)

t=((d * (t - v[removed] * h) + v[added]) mod 13
=((10*(6-1%*9)+ 3) mod 13
=12

\O RABIN KARP ALGORITHM g

\O RABIN KARP ALGORITHM g

8. For BCC, t = 12 (#6). Therefore, go for the next window. After a few
searches, we will get the match for the window CDD in the text.

| |
=6 hashvalue=6

The average case and best case complexity of Rabin-Karp algorithm is
O(m + n) and the worst case complexity is O(m * n).

| 1%\

[2

