
SHORTEST PATH IN A GRAPH
• INTRODUCING
• WHAT IS DIJKSTRA’S ALGORITHM?
• EXAMPLE OF DIJKSTRA’S ALGORITHM
• DIJKSTRA’S TIME AND SPACE COMPLEXITY
• BELLMAN-FORD ALGORITHM
• EXAMPLE OF BELLMAN-FORD ALGORITHM
• BELLMAN-FORD ALGORITHM PSEUDOCODE
• BELLMAN-FORD TIME AND SPACE COMPLEXITY
• PRACTICE: SHORTEST PATH PROBLEM

Author: prof. Yevhenii Borodavka

INTRODUCING
Have you ever wondered how Google Maps can effortlessly
calculate the best route to your destination?
The Dijkstra algorithm is one of the many key algorithms
employed by Google Maps to find and optimize the best route
available for the user.
The Dijkstra algorithm is a method for finding the shortest
path among nodes in a weighted graph and in fact, is the best
known algorithm for this class of problems.

WHAT IS DIJKSTRA’S ALGORITHM?
How it works:
•Define the starting node with a distance of 0.
• Set all the other nodes to a distance of .∞

• Explore neighboring nodes and update their distances (if
lower than its current value).
• Visit the unvisited node with the smallest distance.
• Repeat steps 3 and 4 until the shortest distance is found.

EXAMPLE OF DIJKSTRA’S ALGORITHM
Let’s go through a step-by-step example and find the shortest
distance between nodes A and G.
Note: The terms node and vertex are used interchangeably.
Note: A priority queue (min-heap) is a data structure that
orders data in ascending order.

EXAMPLE OF DIJKSTRA’S ALGORITHM
How to understand the graphs:
• Red vertices and edges: represent the vertices being

explored.
• Red numbers: signify an update in the shortest distance.
• Red tuples: represents newly added tuples to the priority

queue.
• Blue tuples: represent tuples being removed from the

queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 1:
• Initialize the graph by setting the starting node at a distance

of 0.
• The distances to the other nodes are still unknown so are set

to a worst-case distance of .∞

• Since vertex A has been explored, vertex A and its
corresponding distance are added to the priority queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 2:
• Explore the edges stemming from the first tuple in the

priority queue.
• Remove the tuple from the priority queue after it has been

explored.
•Update the distances of the explored vertices if necessary.
• Add the tuples corresponding to each explored vertex to the

priority queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 3:
• Explore the edges connecting to vertex D.
• Remove (2, D) from the priority queue.
•Update the shortest distances of the explored vertices.
• Add the corresponding tuples to the priority queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM

EXAMPLE OF THE DIJKSTRA’S ALGORITHM
Step 4: Continue the same process as described in the
previous steps.

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 5: This step is a little different
• Essentially, we only explore the top vertex from the priority

queue if its distance is smaller than the value already stored
in the distance list. 4 > 3, which means a shorter distance to
vertex B has already been found. Therefore, it is unnecessary
to visit it again.
•Due to the above reasons, we explore the edges from the

next tuple, vertex C, and then discard both tuples from the
priority queue.
• The distance to F is larger than previously found as a result is

not updated in distances, but the corresponding tuple is still
added to the priority queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 6: Repeat the same process as described in previous
steps.

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 7: This requires the same process as explained in step 5.

EXAMPLE OF DIJKSTRA’S ALGORITHM
Step 8: none of the tuples fit the condition of having a smaller
distance value than those in distances. Therefore, they are all
removed from the priority queue.

EXAMPLE OF DIJKSTRA’S ALGORITHM
This is it, there are no more tuples in the priority queue. We
have just completed Dijkstra’s Algorithm!
The shortest distance from the START node to all remaining
nodes has been found. The shortest path from START to END
has a distance of 8.
To find the shortest path by nodes, ADBEG, an additional list
must be created to store the temporary shortest paths.

DIJKSTRA’S TIME AND SPACE COMPLEXITY
There are multiple implementations of Dijkstra’s algorithm,
however, we will focus on the fastest and the most optimal
implementation.
This is achieved by the use of priority queues (min-heap).
The min-heap stores the vertex along with its corresponding
distance. During Dijkstra’s algorithm, the vertex with the
lowest distance is always found and explored. The best way of
doing this is with a min-heap, which finds the minimum value
in the heap. This requires an O(log V) time complexity, where
V is the number of vertices in the graph.

DIJKSTRA’S TIME AND SPACE COMPLEXITY
In addition, throughout the algorithm, each edge is visited at
most once while exploring vertices. This process requires a
time complexity of O(E), where E is the number of edges in the
graph.
When the minimum value vertex is extracted from the heap,
the neighboring edges are then explored and their vertices
are added to the heap. Therefore, combining these results
yields an overall time complexity of O(E log V) for Dijkstra’s
algorithm.
To store the distances of each vertex, an additional space
complexity of O(V) is required. Furthermore, the min-heap
that stores the shortest distances during the worst-case will
be O(V).

BELLMAN-FORD ALGORITHM
Bellman-Ford is a single source shortest path algorithm that
determines the shortest path between a given source vertex
and every other vertex in a graph. This algorithm can be used
on both weighted and unweighted graphs.
A Bellman-Ford algorithm is also guaranteed to find the
shortest path in a graph, similar to Dijkstra’s algorithm.
Although Bellman-Ford is slower than Dijkstra’s algorithm, it is
capable of handling graphs with negative edge weights,
which makes it more versatile.

BELLMAN-FORD ALGORITHM
The shortest path cannot be found if there exists a negative
cycle in the graph. If we continue to go around the negative
cycle an infinite number of times, then the cost of the path
will continue to decrease (even though the length of the path
is increasing). As a result, Bellman-Ford is also capable of
detecting negative cycles, which is an important feature.
The Bellman-Ford algorithm’s primary principle is that it starts
with a single source and calculates the distance to each node.
The distance is initially unknown and assumed to be infinite,
but as time goes on, the algorithm relaxes those paths by
identifying a few shorter paths. Hence it is said that Bellman-
Ford is based on the “Principle of Relaxation“.

BELLMAN-FORD ALGORITHM
Principle of Relaxation of Edges for Bellman-Ford:
• It states that for the graph having N vertices, all the edges

should be relaxed N-1 times to compute the single source’s
shortest path.
• To detect whether a negative cycle exists or not, relax all the

edges one more time, and if the shortest distance for any
node reduces then we can say that a negative cycle exists. In
short, if we relax the edges N times, and there is any change
in the shortest distance of any node between the N-1th and
Nth relaxation then a negative cycle exists, otherwise not
exist.

BELLMAN-FORD ALGORITHM
Why Relaxing Edges N-1 times, gives us Single Source
Shortest Path?
In the worst-case scenario, the shortest path between two
vertices can have at most N-1 edges, where N is the number
of vertices. This is because a simple path in a graph with N
vertices can have at most N-1 edges, as it’s impossible to form
a closed loop without revisiting a vertex.
By relaxing edges N-1 times, the Bellman-Ford algorithm
ensures that the distance estimates for all vertices have been
updated to their optimal values, assuming the graph doesn’t
contain any negative-weight cycles reachable from the source
vertex. If a graph contains a negative-weight cycle reachable
from the source vertex, the algorithm can detect it after N-1
iterations, since the negative cycle disrupts the shortest path
lengths.

BELLMAN-FORD ALGORITHM
Why Does the Reduction of Distance in the Nth Relaxation
Indicates the Existence of a Negative Cycle?
As previously discussed, achieving the single source shortest
paths to all other nodes takes N-1 relaxations. If the Nth
relaxation further reduces the shortest distance for any node,
it implies that a certain edge with negative weight has been
traversed once more. It is important to note that during the
N-1 relaxations, we presumed that each vertex is traversed
only once. However, the reduction of distance during the Nth
relaxation indicates revisiting a vertex.

EXAMPLE OF BELLMAN-FORD ALGORITHM
Let’s suppose we have a graph which is given below.

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 1. Initialize a distance array Dist[] to store the shortest
distance for each vertex from the source vertex. Initially
distance of the source will be 0 and the Distance of other
vertices will be INFINITY.

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 2. Start relaxing the edges, during 1st Relaxation:
Current Distance of B > (Distance of A) + (Weight of A to B) i.e.
Infinity > 0 + 5, therefore, Dist[B] = 5

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 3. During 2nd Relaxation:
• Current Distance of D > (Distance of B) + (Weight of B to D)

i.e. Infinity > 5 + 2, Dist[D] = 7
• Current Distance of C > (Distance of B) + (Weight of B to C)

i.e. Infinity > 5 + 1, Dist[C] = 6

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 3. Visualization

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 4. During 3nd Relaxation:
• Current Distance of F > (Distance of D) + (Weight of D to F)

i.e. Infinity > 7 + 2, Dist[F] = 9
• Current Distance of E > (Distance of C) + (Weight of C to E) i.e.

Infinity > 6 + 1, Dist[E] = 7

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 4. Visualization

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 5. During 4th Relaxation:
• Current Distance of D > (Distance of E) + (Weight of E to D)

i.e.
7 > 7 + (-1), Dist[D] = 6
• Current Distance of E > (Distance of F) + (Weight of F to E) i.e.
7 > 9 + (-3), Dist[E] = 6

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 5. Visualization

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 6. During 5th Relaxation:
• Current Distance of F > (Distance of D) + (Weight of D to F)

i.e.
9 > 6 + 2, Dist[F] = 8
• Current Distance of D > (Distance of E) + (Weight of E to D)

i.e.
6 > 6 + (-1), Dist[D] = 5
• Since the graph has 6 vertices, So during the 5th relaxation

the shortest distance for all the vertices should have been
calculated.

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 6. Visualization

EXAMPLE OF BELLMAN-FORD ALGORITHM
Step 7. Now the final relaxation i.e. the 6th relaxation should
indicate the presence of a negative cycle if there are any
changes in the distance array of the 5th relaxation.
During the 6th relaxation, the following changes can be seen:
• Current Distance of E > (Distance of F) + (Weight of F to E) i.e.
6 > 8 + (-3), Dist[E] = 5
• Current Distance of F > (Distance of D) + (Weight of D to F)

i.e.
8 > 5 + 2, Dist[F] = 7
Since we observe changes in the Distance array hence, we can
conclude the presence of a negative cycle in the graph.

EXAMPLE OF BELLMAN–FORD ALGORITHM
Step 7. A negative cycle (D->F->E) exists in the graph.

BELLMAN-FORD ALGORITHM PSEUDOCODE
function bellmanFord(G, S)
 for each vertex V in G
 distance[V] <- infinite
 previous[V] <- NULL
 distance[S] <- 0
 for each vertex V in G
 for each edge (U,V) in G
 tempDistance <- distance[U] + edge_weight(U, V)
 if tempDistance < distance[V]
 distance[V] <- tempDistance
 previous[V] <- U
 for each edge (U,V) in G
 if distance[U] + edge_weight(U, V) < distance[V}
 Error: Negative Cycle Exists
 return distance[], previous[]

BELLMAN-FORD TIME AND SPACE COMPLEXITY
Time Complexity
Best Case Complexity O(E)
Average Case Complexity O(V*E)
Worst Case Complexity O(V*E)
Space Complexity is O(V).
Bellman Ford vs Dijkstra
Bellman Ford's algorithm and Dijkstra's algorithm are very
similar in structure. While Dijkstra looks only to the immediate
neighbors of a vertex, Bellman goes through each edge in
every iteration.

PRACTICE: SHORTEST PATH PROBLEM
Problem. You have an undirected graph with N vertices (2<=N<=105) and
M edges (2<=M<=105). You need to find the shortest path from vertex 1
to vertex N.
Task. Create a program using C/C++/Python to solve this problem.
Input. The first string contains two numbers N and M. Next follow M
strings each with three numbers: u (1<=u<=N), v (1<=v<=N) — vertices
of the edge, and w (1<=w<=107) — weight of the edge.
Output. The single number — the sum of all edges weight in the
shortest path.

PRACTICE: SHORTEST PATH PROBLEM
Code example:
#include <iostream>
#define MAX 100001
#define INF 0x7fffffff
typedef struct _node_t { int id; int cost; long way; bool vis; struct _node_t* ref; } node_t;
int N, M;
node_t Graph[MAX];
void add_node(int prev, int curr, int cost) { /*your code here*/ };
int main()
{
 cin >> N >> K;
 for(int i = 1; i <= N; i++) Graph[i].id = i;
 int f, s;
 for(int i = 0; i < M; i++)
 {
 cin >> u >> v >> w;
 add_node(u, v, w);
 }
 /*your code here*/
 cout << Graph[N].way;
 return 0;
}

THANK
YOU!

	Shortest path in a graph
	Introducing
	What is Dijkstra’s Algorithm?
	Example of Dijkstra’s Algorithm
	Example of Dijkstra’s Algorithm (2)
	Example of Dijkstra’s Algorithm (3)
	Example of Dijkstra’s Algorithm (4)
	Example of Dijkstra’s Algorithm (5)
	Example of Dijkstra’s Algorithm (6)
	Example of Dijkstra’s Algorithm (7)
	Example of Dijkstra’s Algorithm (8)
	Example of the Dijkstra’s Algorithm
	Example of Dijkstra’s Algorithm (9)
	Example of Dijkstra’s Algorithm (10)
	Example of Dijkstra’s Algorithm (11)
	Example of Dijkstra’s Algorithm (12)
	Example of Dijkstra’s Algorithm (13)
	Example of Dijkstra’s Algorithm (14)
	Dijkstra’s Time and Space Complexity
	Dijkstra’s Time and Space Complexity (2)
	Bellman-Ford algorithm
	Bellman-Ford algorithm (2)
	Bellman-Ford algorithm (3)
	Bellman-Ford algorithm (4)
	Bellman-Ford algorithm (5)
	Example of Bellman-Ford algorithm
	Example of Bellman-Ford algorithm (2)
	Example of Bellman-Ford algorithm (3)
	Example of Bellman-Ford algorithm (4)
	Example of Bellman-Ford algorithm (5)
	Example of Bellman-Ford algorithm (6)
	Example of Bellman-Ford algorithm (7)
	Example of Bellman-Ford algorithm (8)
	Example of Bellman-Ford algorithm (9)
	Example of Bellman-Ford algorithm (10)
	Example of Bellman-Ford algorithm (11)
	Example of Bellman-Ford algorithm (12)
	Example of Bellman–Ford algorithm
	Bellman-Ford algorithm Pseudocode
	Bellman-Ford Time and Space Complexity
	Practice: Shortest path problem
	Practice: Shortest path problem (2)
	Thank you!

