SHORTEST PATH IN A GRAPH

INTRODUCING
WHAT IS DIJKSTRA'S ALGORITHM?
EXAMPLE OF DIJKSTRA'S ALGORITHM
DIJKSTRAS TIME AND SPACE COMPLEXITY
BELLMAN-FORD ALGORITH
EXAMPLE OF BELLMAN-FO

BELLMAN-FO
BELLMAN-FO
PRACTICE: SF

M
RD ALGORITHM

RD ALGORITH
RD TIME AND

M PSEUDOCODE
SPACE COMPLEXITY

ORTEST PATH PROBLEM

Author: prof. Yevhenii Borodavka

|| \\ A

> INTRODUCING

.~ Have you ever wondered how Google Maps can effortlessly
o calculate the best route to your destination?

The Dijkstra algorithm is one of the many key algorithms
employed by Google Maps to find and optimize the best route
\ available for the user.

The Dijkstra algorithm is a method for finding the shortest
path among nodes in a weighted graph and in fact, is the best

o~

/' known algorithm for this class of problems.]

o~

N

N

7N\

\

> WHAT IS DIJKSTRA'S ALGORITHM?

N\

How it works:
* Define the starting node with a distance of 0.
e Set all the other nodes to a distance of «.

* Explore neighboring nodes and update their distances (if
lower than its current value).

* Visit the unvisited node with the smallest distance.
* Repeat steps 3 and 4 until the shortest distance is found.)

I A\ J
| > EXAMPLE OF DIJKSTRA'S ALGORITHM

N\ O 5
.|~ Let's go through a step-by-step example and find the shortest

S distance between nodes A and G.
Note: The terms node and vertex are used interchangeably.

Note: A priority queue (min-heap) is a data structure that
| orders data in ascending order.

> EXAMPLE OF DIJKSTRA'S ALGORITHM

N\ O 1

/.~ How to understand the graphes:

O * Red vertices and edges:. represent the vertices being
explored.

* Red numbers: signify an update in the shortest distance.

* Red tuples: represents newly added tuples to the priority
queue.

~ *Blue tuples: represent tuples being removed from the o
O queue. .

\/’[A /

/ ~

> EXAMPLE OF DIJKSTRA'S ALGORITHM

\ 7\

L Step 1:

7\

* Initialize the graph by setting the starting node at a distance
of 0.

* The distances to the other nodes are still unknown so are set

) to a worst-case distance of o,

N\

*Since vertex A has been explored, vertex A and its
_corresponding distance are added to the priority queue.

e f

7N\

/

N\

> EXAMPLE OF DIJKSTRA'S ALGORITHM

Distances:

AT A
STMT@\G) @/\@ on

Priority Queue: {(0, A)}

A\ /

> EXAMPLE OF DIJKSTRA'S ALGORITHM

AN P

L Step 2:

7N\

* Explore the edges stemming from the first tuple in the
priority queue.

* Remove the tuple from the priority queue after it has been
explored.

* Update the distances of the explored vertices if necessary.

~ *Add the tuples corresponding to each explored vertex to the o
//’“ priority queue. R
\ : /

7\

/ ~
|

Distances:

A: 0
B: 4

Priority Queue: {(0, A),
{21 D}J'
(4, B),
(5, O)}

> EXAMPLE OF DIJKSTRA'S ALGORITHM

N\ M\
1L~ Step 3:

O * Explore the edges connecting to vertex D.
* Remove (2, D) from the priority queue.
\ * Update the shortest distances of the explored vertices.

O * Add the corresponding tuples to the priority queue.

h"m%ﬂ__

@ END
,.:-"""-F:L

Priority Queue: {(2, D),
(3, B),
(4, B),
[5! C)f
{?J E:}!‘
(7, F)}

Distances:

A:0
B:.3
£ 9
[
E: 7

> EXAMPLE OF THE DIJKSTRA'S ALGORITHM

Step 4. Continue the same process as described in the
Distances:

3 : A: 0
4 _~ ;r@a‘x ,-**’f.@%\x‘g

~ :]T" S 5 S B: 3
stART [A 2 END -
s h ___--"-“

%H“"x_ C . D: 2
E: 6

6, E),
)

7, F)}

> EXAMPLE OF DIJKSTRA'S ALGORITHM

f | v Step 5: This step is a little different

O * Essentially, we only explore the top vertex from the priority
queue if its distance is smaller than the value already stored
in the distance list. 4 > 3, which means a shorter distance to

\ vertex B has already been found. Therefore, it is unnecessary

e to visit it again.

* Due to the above reasons, we explore the edges from the

‘ /: next tuple, vertex C, and then discard both tuples from the
priority queue.

N

| * The distance to F is larger than previously found as a result is
“not updated in distances, but the corresponding tuple is still

AAIAI AILA LIAA I“IA‘IL.AIIIAIIA

\>_>

EXAMPLE OF DIJKSTRA'S ALGORITHM

Distances:

A:D
B: 3
E: S
D: 2
E: 6

> EXAMPLE OF DIJKSTRA'S ALGORITHM

.~ Step 6: Repeat the same process as described in previous
Distances:
A:0
B:3
5
D: 2
E:6
Fid

Priority Queue: {(6, E),
(7, E), G: 8
(7, F),
(8, F),
(8, G)}

> EXAMPLE OF DIJKSTRA'S ALGORITHM

. Step 7: This requires the same process as explained in stef
Distances:

@ A: 0
o~ o
f_,f.’__-}’ . B: 3

©

Sy D: 2
| E: 6
F: 7

Priority Queue: {(7, E),
[}r: F}; G: 8
(8, F),
(8, G),
(10, G)}

> EXAMPLE OF DIJKSTRA'S ALGORITHM

.~ Step 8: none of the tuples fit the condition of having a smaller

distance value than those in distances. Therefore, they are all

removed from the priority queue.
Distances:

Priority Queue: {(8, F),
(8, G),
(10, G)}

A\ /

> EXAMPLE OF DIJKSTRA'S ALGORITHM

N\ A
.~ This is it, there are no more tuples in the priority queue. We
S have just completed Dijkstra’'s Algorithm!

The shortest distance from the START node to all remaining

nodes has been found. The shortest path from START to END
N has a distance of 8.

To find the shortest path by nodes, ADBEG, an additional list
must be created to store the temporary shortest paths.

7N\

|
> DIJKSTRA'S TIME AND SPACE COMPLEXITY

.~ There are multiple implementations of Dijkstra’s algorithm,
o however, we will focus on the fastest and the most optimal
implementation.

7N

This is achieved by the use of priority queues (min-heap).

The min-heap stores the vertex along with its corresponding

distance. During Dijkstra’s algorithm, the vertex with the

lowest distance is always found and explored. The best way of

- y P y

‘ /o doing this is with a min-heap, which finds the minimum value)
/~in the heap. This requires an O(log V) time complexity, where /_

\ 7 Vis the number of vertices in the graph. /

/

AN

> DIJKSTRA'S TIME AND SPACE COMPLEXITY

.~ In addition, throughout the algorithm, each edge is visited at

P

\

)

most once while exploring vertices. This process requires a
time complexity of O(E), where E is the number of edges in the
graph.

When the minimum value vertex is extracted from the heap,
the neighboring edges are then explored and their vertices
are added to the heap. Therefore, combining these results
~ yields an overall time complexity of O(E log V) for Dijkstra’s

//“ algorithm.
? To store the distances of each vertex, an additional space

complexity of O(V) is required. Furthermore, the min-heap
that stores the shortest distances durina the worst-case will

\>_>

> BELLMAN-FORD ALGORITHM

/.~ Bellman-Ford is a single source shortest path algorithm that

S determines the shortest path between a given source vertex
and every other vertex in a graph. This algorithm can be used
on both weighted and unweighted graphs.

P

\ A Bellman-Ford algorithm is also guaranteed to find the
e shortest path in a graph, similar to Dijkstra's algorithm.
. Although Bellman-Ford is slower than Dijkstra’s algorithm, it is
| ~ capable of handling graphs with negative edge weights, -

//A which makes it more versatile. JA
\ . /

P

/

I\‘ /

" BELLMAN-FORD ALGORITHM

.~ The shortest path cannot be found if there exists a negative

o cycle in the graph. If we continue to go around the negative
cycle an infinite number of times, then the cost of the path
will continue to decrease (even though the length of the path

\ is increasing). As a result, Bellman-Ford is also capable of
detecting negative cycles, which is an important feature.

~ The Bellman-Ford algorithm'’s primary principle is that it starts
'~ with a single source and calculates the distance to each node. -
/& The distance is initially unknown and assumed to be infinite, |
/ . .
\|/ /~ but as time goes on, the algorithm relaxes those paths by| /
| identifying a few shorter paths. Hence it is said that Bellman-
Ford is based on the “Principle of Relaxation”.

A\ /

> BELLMAN-FORD ALGORITHM

/L = Principle of Relaxation of Edges for Bellman-Ford:

7N\

* [t states that for the graph having N vertices, all the edges
should be relaxed N-1 times to compute the single source’s
shortest path.

* To detect whether a negative cycle exists or not, relax all the
edges one more time, and if the shortest distance for any
node reduces then we can say that a negative cycle exists. In

‘ /” short, if we relax the edges N times, and there is any change j

/ in the shortest distance of any node between the N-1th and /.
o Nth relaxation then a negative cycle exists, otherwise not| /

/AeXiSt. P

N\

7N

N\

7N

I
|

> BELLMAN-FORD ALGORITHM

/L Why Relaxing Edges N-1 times, gives us Single Source

Shortest Path?

In the worst-case scenario, the shortest path between two
vertices can have at most N-1 edges, where N is the number
of vertices. This is because a simple path in a graph with N
vertices can have at most N-1 edges, as it's impossible to form
a closed loop without revisiting a vertex.

P

/o By relaxing edges N-1 times, the Bellman-Ford algorithm
/ ensures that the distance estimates for all vertices have been
7 updated to their optimal values, assuming the graph doesn't
contain any negative-weight cycles reachable from the source
vertex If a aranh contains a neaative-weiaht cvcle reachable

A\ /

> BELLMAN-FORD ALGORITHM

/. - Why Does the Reduction of Distance in the Nth Relaxation
S Indicates the Existence of a Negative Cycle?

As previously discussed, achieving the single source shortest

paths to all other nodes takes N-1 relaxations. If the Nth

\ relaxation further reduces the shortest distance for any node,

O it implies that a certain edge with negative weight has been

~ traversed once more. It is important to note that during the
~ N-1 relaxations, we presumed that each vertex is traversed -
/“ only once. However, the reduction of distance during the Nth)

\ /,\ relaxation indicates revisiting a vertex. /
|

7\

/ ~

> EXAMPLE OF BELLMAN-FORD ALGORITHM

.~ Let's suppose we have a graph which is given below.

Bellman-Ford To Detect A Negative Cycle In A Graph

I\

> EXAMPLE OF BELLMAN-FORD ALGORITHM

.~ Step 1. Initialize a distance array Dist[] to store the shortest
- distance for each vertex from the source vertex. Initially
distance of the source will be 0 and the Distance of other

vertices

Initialize The Distance Array

Source

8 Distance Array

Bellman-Ford To Detect A Negative Cycle In A Graph

I\

> EXAMPLE OF BELLMAN-FORD ALGORITHM

.~ Step 2. Start relaxing the edges, during 1st Relaxation:
$ Current Distance of B > (Distance of A) + (Weight of A to B) i.e.

Infinity > 0 + 5, therefore, Dist[B] =5

Ist Relaxation Of Edges

OOOOOO

Bellman-Ford To Detect A Negative Cycle In A Graph

I ry

© EXAMPLE OF BELLMAN-FORD ALGORITHM

|~ Step 3. During 2nd Relaxation:

* Current Distance of D > (Distance of B) + (Weight of B to D)
l.e. Infinity > 5 + 2, Dist[D] =7

* Current Distance of C > (Distance of B) + (Weight of B to C)
i.e. Infinity > 5 + 1, Dist[C] = 6

> EXAMPLE OF BELLMAN-FORD ALGORITHM

|~ Step 3. Visualization

2nd Relaxation Of Edges

Source
—_—

A
(0) Distance Array

B
Dist [B] + 2 <Dist[D]

5+2<(00)
Dist[D] =7

Dist [B] + 1 <Dist[C]
5+1 <(00)
Dist[c] =6

Bellman-Ford To Detect A Negative Cycle In A Graph

I ry

© EXAMPLE OF BELLMAN-FORD ALGORITHM

N\ A
|~ Step 4. During 3nd Relaxation:

O * Current Distance of F > (Distance of D) + (Weight of D to F)
l.e. Infinity > 7 + 2, Dist[F] =9

* Current Distance of E > (Distance of C) + (Weight of Cto E) i.e.
) Infinity > 6 + 1, Dist[E] = 7

> EXAMPLE OF BELLMAN-FORD ALGORITHM

.~ Step 4. Visualization

3rd Relaxation Of Edges

Source
—_—

A
(0) Distance Array

E|C|D
Dist [D] + 2 <Dist[F]

7+2<(00)
Dist[F] = 9

Dist [C] + 1 <Dist[E]
6+1 <(00)
Dist[E] =7

Bellman-Ford To Detect A Negative Cycle In A Graph

rN

> EXAMPLE OF BELLMAN-FORD ALGORITHM
\A : Step 5. During 4th Relaxation:

O * Current Distance of D > (Distance of E) + (Weight of E to D)
l.e.

7>7+(-1), Dist[D] =6
* Current Distance of E > (Distance of F) + (Weight of Fto E) i.e.
0 7 >9 +(-3), Dist[E] =6

I »

R
/

> EXAMPLE OF BELLMAN-FORD ALGORITHM

. Step 5. Visualization

4th Relaxation Of Edges

Source
—_—

A
(0) Distance Array

. . E|C|DJ|E F
Dist [E] + 2 <Dist[D]

7+(-1)<7
Dist[D] = 6

Dist [F] + 1 <Dist[E]
9+(-3) <6
Dist[E] = 6

Bellman-Ford To Detect A Negative Cycle In A Graph

A\ /

> EXAMPLE OF BELLMAN-FORD ALGORITHM

AN 7~

.~ Step 6. During 5th Relaxation:

O * Current Distance of F > (Distance of D) + (Weight of D to F)
l.e.

9>6+2, Dist[F] =8

AN
1 * Current Distance of D > (Distance of E) + (Weight of E to D)
R l.e.

‘ ~ 6>6+(-1), Dist[D] =5 o

//A * Since the graph has 6 vertices, So during the 5th relaxation)A
\ ’l‘ the shortest distance for all the vertices should have been | /
Scalculated. .

> EXAMPLE OF BELLMAN-FORD ALGORITHM

. Step 6. Visualization

5th Relaxation Of Edges

Source
—_—

A
(0) Distance Array

Dist [E] + (-1) <Dist[D] BE|C|D|E|F

6+(-1)<6
Dist[D] =5

Dist [D] + 2 <Dist[F]
6+2<9
Dist[F] = 8

Bellman-Ford To Detect A Negative Cycle In A Graph

> EXAMPLE OF BELLMAN-FORD ALGORITHM

|~ Step 7. Now the final relaxation i.e. the 6th relaxation should
. indicate the presence of a negative cycle if there are any
changes in the distance array of the 5th relaxation.

During the 6th relaxation, the following changes can be seen:

* Current Distance of E > (Distance of F) + (Weight of F to E) i.e.

B 6>8 +(-3), Dist[E] =5

‘ ~ e Current Distance of F > (Distance of D) + (Weight of D to F) J
|8>5+2,Dist[F]=7 4

Since we observe changes in the Distance array hence, we can || ©

[N T |

> EXAMPLE OF BELLMAN-FORD ALGORITHM
1\ Step 7. A negative cycle (D->F->E) exists in the graph.

Detecting The Negative Edge

By 6Th Relaxation Of Edges P =
By — 2 —QE
/ -~

0

7
source A =]
(0)

Distance Array

\ (B |C|[D|E|F

Dist [F] + (-3) «Dist[E]
8+(-3)<6
Dist[E] =5

Dist [D] + 2 <Dist[F]
6+2<8
Dist[F] = 7

Bellman-Ford To Detect A Negative Cycle In A Graph

l A\ J
© BELLMAN-FORD ALGORITHM PSEUDOCODE

/\ function bellmanFord(G, S) O
o © for each vertex V in G
O distance[V] <- infinite
previous[V] <- NULL
distance[S] <- ©
for each vertex V in G
for each edge (U,V) in G
tempDistance <- distance[U] + edge weight(U, V)
O 1T tempDistance < distancel[V]
distance[V] <- tempDistance
previous[V] <- U
for each edge (U,V) in G
//9\ 1t distance[U] + edge weight(U, V) < distance[V} r)

//; Error: Negative Cycle Exists
return distance[], previous|]

\

7\

© BELLMAN-FORD TIME AND SPACE COMPLEXITY

\ 7\

)L W Time Complexity

7\

N

Best Case Complexity O(E)
Average Case Complexity O(V*E)
Worst Case Complexity O(V*E)
Space Complexity is O(V).

Bellman Ford vs Dijkstra

_similar in structure. While Dijkstra looks only to the immediate

‘/,\ Bellman Ford's algorithm and Dijkstra's algorithm are very
\//:

| neighbors of a vertex, Bellman goes through each edge in
every iteration.

7N\

N\

/

N\
|

N

P

7\

N

N\

7N\

|

> PRACTICE: SHORTEST PATH PROBLEM

7\

Problem. You have an undirected graph with N vertices (2<=N<=10°) and
M edges (2<=M<=10°). You need to find the shortest path from vertex 1
to vertex N.

Task. Create a program using C/C++/Python to solve this problem.

Input. The first string contains two numbers N and M. Next follow M
strings each with three numbers: u (1<=u<=N), v (1<=v<=N) — vertices
of the edge, and w (1<=w<=107) — weight of the edge.

Output. The single number — the sum of all edges weight in the

/: shortest path.

N\

/

7\

\° PRACTICE: SHORTEST PATH PROBLEM
N \© S

11) Code example:

e #include <iostream>
#define MAX 100001
#define INF Ox7fffffff
typedef struct node t { id; cost; way; vis; struct node t* ref; } node t;
N, M;
node t Graph[MAX];
add node(prev, curr, cost) { /*your code here*/ };

W main ()
0)

cin >> N >> K;
for(i=1; i <= N; i++) Graph[i].id = i;
®) f, s;
for(i=0; i< M; i++)
O) { 0O)

cin >> u >> v >> w;
O add node(u, v, w);
} 0O
'@ /*your code here*/
(/// cout << Graph[N].way;
O

return 0;

	Shortest path in a graph
	Introducing
	What is Dijkstra’s Algorithm?
	Example of Dijkstra’s Algorithm
	Example of Dijkstra’s Algorithm (2)
	Example of Dijkstra’s Algorithm (3)
	Example of Dijkstra’s Algorithm (4)
	Example of Dijkstra’s Algorithm (5)
	Example of Dijkstra’s Algorithm (6)
	Example of Dijkstra’s Algorithm (7)
	Example of Dijkstra’s Algorithm (8)
	Example of the Dijkstra’s Algorithm
	Example of Dijkstra’s Algorithm (9)
	Example of Dijkstra’s Algorithm (10)
	Example of Dijkstra’s Algorithm (11)
	Example of Dijkstra’s Algorithm (12)
	Example of Dijkstra’s Algorithm (13)
	Example of Dijkstra’s Algorithm (14)
	Dijkstra’s Time and Space Complexity
	Dijkstra’s Time and Space Complexity (2)
	Bellman-Ford algorithm
	Bellman-Ford algorithm (2)
	Bellman-Ford algorithm (3)
	Bellman-Ford algorithm (4)
	Bellman-Ford algorithm (5)
	Example of Bellman-Ford algorithm
	Example of Bellman-Ford algorithm (2)
	Example of Bellman-Ford algorithm (3)
	Example of Bellman-Ford algorithm (4)
	Example of Bellman-Ford algorithm (5)
	Example of Bellman-Ford algorithm (6)
	Example of Bellman-Ford algorithm (7)
	Example of Bellman-Ford algorithm (8)
	Example of Bellman-Ford algorithm (9)
	Example of Bellman-Ford algorithm (10)
	Example of Bellman-Ford algorithm (11)
	Example of Bellman-Ford algorithm (12)
	Example of Bellman–Ford algorithm
	Bellman-Ford algorithm Pseudocode
	Bellman-Ford Time and Space Complexity
	Practice: Shortest path problem
	Practice: Shortest path problem (2)
	Thank you!

