Introduction
Vertex-vertex meshes
Face-vertex meshes
Winged-edge meshes

File structures for storing meshes



INTRODUCTION

In 3D computer graphics and solid modeling, a polygon mesh is a collection of
vertices, edges, and faces that define the shape of a polyhedral object. The faces
usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple
convex polygons (n-gons), since this simplifies rendering, but may also be more
generally composed of concave polygons, or even polygons with holes.

ST ﬁ%@@ o
. SRS \@\\{iﬁ N

vertices edges faces polygons surfaces



Objects created with polygon meshes must store different types of elements.
These include vertices, edges, faces, polygons, and surfaces. In many applications,
only vertices, edges, and either faces or polygons are stored.

Vertex — a position (usually in 3D space) along with other information such as
color, normal vector, and texture coordinates.

Edge — a connection between two vertices.

Face — a closed set of edges, in which a triangle face has three edges, and a quad
face has four edges. A polygon is a coplanar set of faces. In systems that support
multi-sided faces, polygons and faces are equivalent. However, most rendering
hardware supports only 3- or 4-sided faces, so polygons are represented as
multiple faces.

Polygon meshes may be represented in a variety of ways, using different methods
to store the vertex, edge, and face data.



Vertex-Vertex Meshes (VV)

Vertex List
vlv5v4v3vo

000
v2v6 v v0 v9

v3iv/ ve vl vo
v2Zve v7 v4d v9

vivOv3v/v8
v vl vOv4 v8
v/ v2vlv5v8

v4 v3 v2vb v8
vd v5 ve v7
vOvl v2v3




Vertex-vertex (VV) meshes represent an object as a set of vertices connected to
other vertices. This is the simplest representation, but not widely used since the
face and edge information is implicit. Thus, it is necessary to traverse the data in
order to generate a list of faces for rendering. In addition, operations on edges
and faces are not easily accomplished.

However, VV meshes benefit from small storage space and efficient morphing of
shape. The above figure shows a four-sided box as represented by a VV mesh.
Each vertex indexes its neighboring vertices. The last two vertices, 8 and 9 at the
top and bottom center of the "box-cylinder", have four connected vertices rather
than five. A general system must be able to handle an arbitrary number of vertices
connected to any given vertex.



Face-Vertex Meshes

Face List

Vertex List

VO v w5

0,0,0

0 f1 12 N5 7

VO W5 W

1,00

2313 N2 N

V1 V5 vb

1,1,0

f4 f5 14 113 3

V1 Ve V2

01,0

f6 f7 f15 f14 15

V2 Ve V7

0,0,1

f6 f7f0 182 1

v2 VT v3

1,01

fofifa © f8

vi vl wvd

11,1

21314 N0 19

vi vd vD

01,1

415/ 111 11

v8 v5

5,50

f8 M f10111

va v/ vo

va uﬁ V5

a1

{1213 1415

va v vf
VO Vw5 vy

e e

VO VB V5

vo w7 vb

Vo wq w7




Face-vertex (FV) meshes represent an object as a set of faces and a set of vertices. This is the most
widely used mesh representation, being the input typically accepted by modern graphics
hardware.

Face-vertex meshes improve on VV-mesh for modeling in that they allow explicit lookup of the
vertices of a face, and the faces surrounding a vertex. The above figure shows the "box-cylinder"
example as an FV mesh. Vertex v5 is highlighted to show the faces that surround it. Notice that, in
this example, every face is required to have exactly 3 vertices. However, this does not mean every
vertex has the same number of surrounding faces.

For rendering, the face list is usually transmitted to the GPU as a set of indices to vertices, and the
vertices are sent as position/color/normal structures (in the figure, only position is given). This has
the benefit that changes in shape, but not geometry can be dynamically updated by simply
resending the vertex data without updating the face connectivity.

Modeling requires easy traversal of all structures. With face-vertex meshes, it is easy to find the
vertices of a face. Also, the vertex list contains a list of faces connected to each vertex. Unlike VV
meshes, both faces and vertices are explicit, so locating neighboring faces and vertices is constant
time. However, the edges are implicit, so a search is still needed to find all the faces surrounding a
given face. Other dynamic operations, such as splitting or merging a face, are also difficult with
face-vertex meshes.



Introduced by Baumgart in 1975,
winged-edge NESES explicitly
represent the vertices, faces, and
edges of a mesh. This representation is
widely used in modeling programs to
provide the greatest flexibility in
dynamically changing the mesh
geometry because split and merge
operations can be done quickly. Their
primary drawback is large storage
requirements and increased
complexity due to maintaining many
indices.

Winged-Edge Meshes

Faca List

Winged Edge Structure




Winged-edge meshes address the issue of traversing from edge to edge and
providing an ordered set of faces around an edge. For any given edge, the number
of outgoing edges may be arbitrary. To simplify this, winged-edge meshes provide
only four, the nearest clockwise and counter-clockwise edges at each end. The
other edges may be traversed incrementally. The information for each edge
therefore resembles a butterfly, hence "winged-edge" meshes. The above figure
shows the "box-cylinder" as a winged-edge mesh. The total data for an edge
consists of 2 vertices (endpoints), 2 faces (on each side), and 4 edges (winged-
edge).

Rendering of winged-edge meshes for graphics hardware requires generating a
Face index list. This is usually done only when the geometry changes. Winged-
edge meshes are ideally suited for dynamic geometry, such as subdivision surfaces
and interactive modeling since changes to the mesh can occur locally. Traversal
across the mesh, as might be needed for collision detection, can be accomplished
efficiently.



There are several file structures to store meshes. We will consider three of them:
explicit representation, list of vertices, and list of edges.

In explicit representation, an object consists of a set of faces, each of which is a
polygon consisting of a sequence of vertex coordinates:

Faces Coordinates
fl lelzl’ X2y222’ Xéyézé’ X5y525
f2 X2y222’ X3y3z3’ X7y7z7’ Xéyézé

The disadvantages of this representation are that, firstly, the relationships of the
faces are set implicitly, and secondly, the coordinates of each vertex appear as
many times as the faces have this vertex.



To avoid repeating the coordinates of the vertices, you can separate them into an
independent structure. In this case, not the coordinates of the vertices, as in the
previous case, but their indices in the array of vertex coordinates are associated
with the faces. Example:

Vertices Coordinates Faces Vertices
Vl lelzl fl V1V2V3V4
\Z X2Y24) fz VeVaViVs
V3 X3y3z3 f3 V7V3V2V6
V4 X4y4z4 f4 V8V4V3V7
V5 X5y525 f5 V5V1V4V8
V6 Xéyézé fé V8V7V6V5
V7 X7y7z7
V8 X8y828




The list of edges describes faces through the edges. The faces vertices are defined
explicitly via edges. Example:

Edges Vertices Vertices Coordinates | Faces Edges
el V1V2 Vl lelzl fl e1e2e3e4
eZ V2V3 V2 X2y222 f2 e9ec’>e1e5
e3 V3V4 V3 X3y3z3 f3 e10e7eZe6
e4 V4V1 V4 X4y4z4 f4 e11e8e7eB
e5 V1V5 V5 X5y525 f5 e12e5e4e8
e() V2V6 V6 Xéyézé f6 e12e11e10e9
e7 V3V7 V7 X7y7z7
e8 V4V8 V8 X8y828
e9 V5V6
elO V6V7
ell V7V8







	Polygon Meshes
	Introduction
	Introduction (2)
	Vertex-vertex meshes
	Vertex-vertex meshes (2)
	Face-vertex meshes
	Face-vertex meshes (2)
	Winged-edge meshes
	Winged-edge meshes (2)
	File structures for storing meshes
	File structures for storing meshes (2)
	File structures for storing meshes (3)
	Slide 13

