DEPTH-FIRST SEARCH

e ALGORITHM DESCRIPTION

e ALGORITHM EXAMPLE

e ALGORITHM COMPLEXITY

e ALGORITHM APPLICATIONS

* PRACTICE: MAXIMUM STREAM PROBLEM

Author: prof. Yevhenii Borodavka

> ALGORITHM DESCRIPTION

.~ Depth first Search or Depth first traversal is a recursive
o algorithm for searching all the vertices of a graph or tree data
structure. Traversal means visiting all the nodes of a graph.

A standard DFS implementation puts each vertex of the graph
\ into one of two categories:
< * Visited

7N

‘ _ *Not Visited

/o The purpose of the algorithm is to mark each vertex as visited JA

\ /T while avoiding cycles. /

7N

/

7N

Pam

N\

f " The DFS algorithm works as follows:

7N

N\

7N

7N

> ALGORITHM DESCRIPTION

/A

1. Start by putting any one of the graph's vertices on top of a
stack.

2. Take the top item of the stack and add it to the visited list.

3. Create a list of that vertex's adjacent nodes. Add the ones
which aren't in the visited list to the top of the stack.

~ 4. Keep repeating steps 2 and 3 until the stack is empty.

7N

/ ~
1

1)

> ALGORITHM EXAMPLE

AN

|~ Let's see how the Depth First Search algorithm works with an
o example. We use an undirected graph with 5 vertices.

1\

> ALGORITHM EXAMPLE

.~ We start from vertex 0, the DFS algorithm starts by putting it

o in the Visited list and putting all its adjacent vertices in the
stack.

P

> ALGORITHM EXAMPLE

.~ Next, we visit the element at the top of stack i.e. 1 and go to
S its adjacent nodes. Since 0 has already been visited, we visit 2
instead.

3
Lo |
; .\2
@ » RIS

\/T

P

P

/

> ALGORITHM EXAMPLE

AN

/. Vertex 2 has an unvisited adjacent vertex in 4, so we add that “

o to the top of the stack and visit it.

> ALGORITHM EXAMPLE

.~ Vertex 4 has no unvisited adjacent vertex, so we have nothing
o to add to the top of the stack.

7N\

\\

> ALGORITHM EXAMPLE

|~ After we visit the last element 3, it doesn't have any unvisited
& adjacent nodes, so we have completed the Depth First
Traversal of the graph.

7N\

> ALGORITHM COMPLEXITY

N N\
.~ The time complexity of the DFS algorithm is represented in

A the form of O(V + E), where V is the number of nodes and E is
the number of edges.

7\

The space complexity of the algorithm is O(V).

) The algorithm pseudocode:

DFS(G, u)

u.visited = true

for each v € G.Adj[u]
/C; if v.visited == false F/JA

N

7\

|

DFS (G, V) /

N

Fan

A\

> ALGORITHM APPLICATIONS

Fam

~ 1. For finding the path

2

O U1 bW

. To test if the graph is bipartite

. For finding the strongly connected components of a graph
. For detecting cycles in a graph

. Topological sorting

. Solving puzzles with only one solution, such as mazes

\\ /‘

V.

> PRACTICE: MAXIMUM STREAM PROBLEM

AN 7~

/| Problem. You have N network nodes (1<=N<=100) and K ©

A connections (1<=K<=1000) between the nodes with transfer
speed S (1<=5<=1000). You need to compute the maximum
transfer speed between nodes A and

\ Task. Create a program using C/C++/Python to solve this
O problem.

Input. K+1 strings: the first one contains 4 numbers N, K, A,

an

and B divided by spaces; each of the next K strings contains 3)
\ /"

//A numbers - indexes of connected nodes and transfer speed

N\

| divided by spaces.
éutput. Maximal transfer speed between the node A and the | ©

IAAAIA

L\\h h/

\\° PRACTICE: MAXIMUM STREAM PROBLEM
\,\ : Example. We have N=5 and K=6, A=1 and

o Hiput:
5615 2 5
127 h

) 232
342

© 355
452 VENdnE] R
\ /‘ stream: 0 /

N

\m

\\° PRACTICE: MAXIMUM STREAM PROBLEM

®)

/

... Step 1. Found any path using DFS and count the maximal “

S transfer speed.

)

®)

0

‘ /

Maximal
stream 1;
2

Ul

° PRACTICE: MAXIMUM STREAM PROBLEM

J

'O

\,\ . Step 2. Move back trough the path decreasing upstream and

A increasing downstream by the cur

)

0O)

0O)

0

Maximal
stream 1;
2

maximum.

N

\m

\© PRACTICE: MAXIMAUM STREAM PROBLEM

®)

/

... Step 3. Found any path using DFS and count the maximal “

S transfer speed.

)

®)

0

5

Maximal
stream 2:
4

L \\ !) J
° PRACTICE: MAXIMUM STREAM PROBLEM

\,\ - Step 4. Move back trough the path decreasing upstream and
A increasing downstream by the cur maximum.

\ ‘ 1

0O)

/m Maximal £
\ /“ stream 2: /
1, 4

L \\ !) J
° PRACTICE: MAXIMUM STREAM PROBLEM

\,\ . Step 5. Found any path using DFS and count the maximal *
A transfer speed.

\ ‘ 1

0O)

/m Maximal
\ /T stream 3:
\ /f\

0 o

N

> PRACTICE: MAXIMUM STREAM PROBLEM
e 5

.~ As we can't find any path from the start node to the finish

S node the algorithm stops. The maximal stream will be sum of
all maximal streams at each forward step. For this example it
IS 2+4=6.

\m

\L“ PRACTICE: MAXIMUM STREAM PROBLEM

11\ Code example:

) #include <iostream>
#define MAX 101

{
]

O

i

N, K, A, B, R, P[MAX], VIMAX], M[MAX][MAX];
main ()

cin >> N >> K >> A >> B;

f, s, w;
for(i=0; i< K; i++)
{
cin >> f >> s >> w;
M[f][s] = w;
M[s][f] = w;
}
// Your code here
cout << R;
return 0;

O

/

	Depth-first search
	Algorithm Description
	Algorithm Description (2)
	algorithm example
	algorithm example (2)
	algorithm example (3)
	algorithm example (4)
	algorithm example (5)
	algorithm example (6)
	Algorithm Complexity
	Algorithm Applications
	Practice: Maximum stream problem
	Practice: Maximum stream problem (2)
	Practice: Maximum stream problem (3)
	Practice: Maximum stream problem (4)
	Practice: Maximaum stream problem
	Practice: Maximum stream problem (5)
	Practice: Maximum stream problem (6)
	Practice: Maximum stream problem (7)
	Practice: Maximum stream problem (8)
	Thank you!

