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> ALGORITHM DESCRIPTION

.~ Depth first Search or Depth first traversal is a recursive
o algorithm for searching all the vertices of a graph or tree data
structure. Traversal means visiting all the nodes of a graph.

A standard DFS implementation puts each vertex of the graph
\ into one of two categories:
< * Visited

7N

‘ _ *Not Visited

/o The purpose of the algorithm is to mark each vertex as visited JA

\ /T while avoiding cycles. /
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f " The DFS algorithm works as follows:
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> ALGORITHM DESCRIPTION

/A

1. Start by putting any one of the graph's vertices on top of a
stack.

2. Take the top item of the stack and add it to the visited list.

3. Create a list of that vertex's adjacent nodes. Add the ones
which aren't in the visited list to the top of the stack.

~ 4. Keep repeating steps 2 and 3 until the stack is empty.
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> ALGORITHM EXAMPLE

AN

|~ Let's see how the Depth First Search algorithm works with an
o example. We use an undirected graph with 5 vertices.




1\

> ALGORITHM EXAMPLE

.~ We start from vertex 0, the DFS algorithm starts by putting it

o in the Visited list and putting all its adjacent vertices in the
stack.
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> ALGORITHM EXAMPLE

.~ Next, we visit the element at the top of stack i.e. 1 and go to
S its adjacent nodes. Since 0 has already been visited, we visit 2
instead.
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> ALGORITHM EXAMPLE

AN

/. Vertex 2 has an unvisited adjacent vertex in 4, so we add that “

o to the top of the stack and visit it.




> ALGORITHM EXAMPLE

.~ Vertex 4 has no unvisited adjacent vertex, so we have nothing
o to add to the top of the stack.
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> ALGORITHM EXAMPLE

|~ After we visit the last element 3, it doesn't have any unvisited
& adjacent nodes, so we have completed the Depth First
Traversal of the graph.
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> ALGORITHM COMPLEXITY

N N\
.~ The time complexity of the DFS algorithm is represented in

A the form of O(V + E), where V is the number of nodes and E is
the number of edges.
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The space complexity of the algorithm is O(V).

) The algorithm pseudocode:

DFS(G, u)

u.visited = true

for each v € G.Adj[u]
/C; if v.visited == false F/JA
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DFS (G, V) /
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> ALGORITHM APPLICATIONS

Fam

~ 1. For finding the path

2
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. To test if the graph is bipartite

. For finding the strongly connected components of a graph
. For detecting cycles in a graph

. Topological sorting

. Solving puzzles with only one solution, such as mazes
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> PRACTICE: MAXIMUM STREAM PROBLEM

AN 7~

/| Problem. You have N network nodes (1<=N<=100) and K ©

A connections (1<=K<=1000) between the nodes with transfer
speed S (1<=5<=1000). You need to compute the maximum
transfer speed between nodes A and

\ Task. Create a program using C/C++/Python to solve this
O problem.

Input. K+1 strings: the first one contains 4 numbers N, K, A,

an

and B divided by spaces; each of the next K strings contains 3 )
\ /"

//A numbers - indexes of connected nodes and transfer speed

N\

| divided by spaces.
éutput. Maximal transfer speed between the node A and the | ©
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\\° PRACTICE: MAXIMUM STREAM PROBLEM
\,\ : Example. We have N=5 and K=6, A=1 and

o Hiput:
5615 2 5
127 h

) 232
342

© 355
452 VENdnE] R
\ /‘ stream: 0 /
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\\° PRACTICE: MAXIMUM STREAM PROBLEM
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... Step 1. Found any path using DFS and count the maximal “

S transfer speed.
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° PRACTICE: MAXIMUM STREAM PROBLEM
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\,\ . Step 2. Move back trough the path decreasing upstream and

A increasing downstream by the cur
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stream 1;
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\© PRACTICE: MAXIMAUM STREAM PROBLEM
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... Step 3. Found any path using DFS and count the maximal “

S transfer speed.
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\,\ - Step 4. Move back trough the path decreasing upstream and
A increasing downstream by the cur maximum.
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\ /“ stream 2: /
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° PRACTICE: MAXIMUM STREAM PROBLEM

\,\ . Step 5. Found any path using DFS and count the maximal *
A transfer speed.
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> PRACTICE: MAXIMUM STREAM PROBLEM
e 5

.~ As we can't find any path from the start node to the finish

S node the algorithm stops. The maximal stream will be sum of
all maximal streams at each forward step. For this example it
IS 2+4=6.
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\L“ PRACTICE: MAXIMUM STREAM PROBLEM

11\ Code example:

) #include <iostream>
#define MAX 101

{
]

O

i

N, K, A, B, R, P[MAX], VIMAX], M[MAX][MAX];
main ()

cin >> N >> K >> A >> B;

f, s, w;
for( i=0; i< K; i++)
{
cin >> f >> s >> w;
M[f][s] = w;
M[s][f] = w;
}
// Your code here
cout << R;
return 0;
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