
DEPTH-FIRST SEARCH
• ALGORITHM DESCRIPTION
• ALGORITHM EXAMPLE
• ALGORITHM COMPLEXITY
• ALGORITHM APPLICATIONS
• PRACTICE: MAXIMUM STREAM PROBLEM 

Author: prof. Yevhenii Borodavka



ALGORITHM DESCRIPTION
Depth first Search or Depth first traversal is a recursive 
algorithm for searching all the vertices of a graph or tree data 
structure. Traversal means visiting all the nodes of a graph.
A standard DFS implementation puts each vertex of the graph 
into one of two categories:
• Visited
•Not Visited
The purpose of the algorithm is to mark each vertex as visited 
while avoiding cycles.



ALGORITHM DESCRIPTION
The DFS algorithm works as follows:
1. Start by putting any one of the graph's vertices on top of a 

stack.
2. Take the top item of the stack and add it to the visited list.
3. Create a list of that vertex's adjacent nodes. Add the ones 

which aren't in the visited list to the top of the stack.
4. Keep repeating steps 2 and 3 until the stack is empty.



ALGORITHM EXAMPLE
Let's see how the Depth First Search algorithm works with an 
example. We use an undirected graph with 5 vertices.



ALGORITHM EXAMPLE
We start from vertex 0, the DFS algorithm starts by putting it 
in the Visited list and putting all its adjacent vertices in the 
stack.



ALGORITHM EXAMPLE
Next, we visit the element at the top of stack i.e. 1 and go to 
its adjacent nodes. Since 0 has already been visited, we visit 2 
instead.



ALGORITHM EXAMPLE
Vertex 2 has an unvisited adjacent vertex in 4, so we add that 
to the top of the stack and visit it.



ALGORITHM EXAMPLE
Vertex 4 has no unvisited adjacent vertex, so we have nothing 
to add to the top of the stack.



ALGORITHM EXAMPLE
After we visit the last element 3, it doesn't have any unvisited 
adjacent nodes, so we have completed the Depth First 
Traversal of the graph.



ALGORITHM COMPLEXITY
The time complexity of the DFS algorithm is represented in 
the form of O(V + E), where V is the number of nodes and E is 
the number of edges.
The space complexity of the algorithm is O(V).
The algorithm pseudocode:
DFS(G, u)

    u.visited = true

    for each v ∈ G.Adj[u]

        if v.visited == false

            DFS(G,v)



ALGORITHM APPLICATIONS
1. For finding the path
2. To test if the graph is bipartite
3. For finding the strongly connected components of a graph
4. For detecting cycles in a graph
5. Topological sorting
6. Solving puzzles with only one solution, such as mazes



PRACTICE: MAXIMUM STREAM PROBLEM 
Problem. You have N network nodes (1<=N<=100) and K 
connections (1<=K<=1000) between the nodes with transfer 
speed S (1<=S<=1000). You need to compute the maximum 
transfer speed between nodes A and B.
Task. Create a program using C/C++/Python to solve this 
problem.
Input. K+1 strings: the first one contains 4 numbers N, K, A, 
and B divided by spaces; each of the next K strings contains 3 
numbers – indexes of connected nodes and transfer speed 
divided by spaces.
Output. Maximal transfer speed between the node A and the 
node B.



PRACTICE: MAXIMUM STREAM PROBLEM 
Example. We have N=5 and K=6, A=1 and 
B=5. 

1

Input: 
5 6 1 5
1 2 7
2 3 2
2 4 5
3 4 2
3 5 5
4 5 2

3

52

4

7

2

5

2

5

2

Maximal 
stream: 0

7

2

5

2

2

5



PRACTICE: MAXIMUM STREAM PROBLEM 
Step 1. Found any path using DFS and count the maximal 
transfer speed.

1

3

52

4

7

2

5

2

5

2

Maximal 
stream 1: 
2

7

2

5

2

2

5



PRACTICE: MAXIMUM STREAM PROBLEM 
Step 2. Move back trough the path decreasing upstream and 
increasing downstream by the current maximum.

1

3

52

4

5

0

5

0

5

0

Maximal 
stream 1: 
2

9

4

5

4

4

5



PRACTICE: MAXIMAUM STREAM PROBLEM 
Step 3. Found any path using DFS and count the maximal 
transfer speed.

1

3

52

4

5

0

5

0

5

0

Maximal 
stream 2: 
4

9

4

5

4

4

5



PRACTICE: MAXIMUM STREAM PROBLEM 
Step 4. Move back trough the path decreasing upstream and 
increasing downstream by the current maximum.

1

3

52

4

1

0

1

4

1

0

Maximal 
stream 2: 
4

13

4

9

0

4

9



PRACTICE: MAXIMUM STREAM PROBLEM 
Step 5. Found any path using DFS and count the maximal 
transfer speed.

1

3

52

4

1

0

1

4

1

0

Maximal 
stream 3: 
0

13

4

9

0

4

9



PRACTICE: MAXIMUM STREAM PROBLEM 
As we can’t find any path from the start node to the finish 
node the algorithm stops. The maximal stream will be sum of 
all maximal streams at each forward step. For this example it 
is 2+4=6.



PRACTICE: MAXIMUM STREAM PROBLEM 
Code example:
#include <iostream>
#define MAX 101
int N, K, A, B, R, P[MAX], V[MAX], M[MAX][MAX];
int main()
{
    cin >> N >> K >> A >> B;
    int f, s, w;
    for(int i = 0; i < K; i++)
    {
        cin >> f >> s >> w;
        M[f][s] = w; 
        M[s][f] = w;
    }
    // Your code here
    cout << R;
    return 0;
}



THANK 
YOU!


	Depth-first search
	Algorithm Description
	Algorithm Description (2)
	algorithm example
	algorithm example (2)
	algorithm example (3)
	algorithm example (4)
	algorithm example (5)
	algorithm example (6)
	Algorithm Complexity
	Algorithm Applications
	Practice: Maximum stream problem
	Practice: Maximum stream problem (2)
	Practice: Maximum stream problem (3)
	Practice: Maximum stream problem (4)
	Practice: Maximaum stream problem
	Practice: Maximum stream problem (5)
	Practice: Maximum stream problem (6)
	Practice: Maximum stream problem (7)
	Practice: Maximum stream problem (8)
	Thank you!

