
DYNAMIC PROGRAMMING
• WHAT IS DYNAMIC PROGRAMMING?
• FIBONACCI SEQUENCE
• HOW DYNAMIC PROGRAMMING WORKS
• RECURSION VS DYNAMIC PROGRAMMING
• GREEDY ALGORITHMS VS DYNAMIC

PROGRAMMING
• LONGEST COMMON SUBSEQUENCE
• THE KNAPSACK PROBLEM
• PRACTICE: LONGEST COMMON SUBSEQUENCE

Author: prof. Yevhenii Borodavka

WHAT IS DYNAMIC PROGRAMMING?
Dynamic Programming is a technique in computer
programming that helps to efficiently solve a class of
problems with overlapping subproblems and optimal
substructure properties.
If any problem can be divided into subproblems, which in turn
are divided into smaller subproblems, and if there are
overlapping among these subproblems, then the solutions to
these subproblems can be saved for future reference. Thus,
the efficiency of the CPU can be enhanced. This method of
solving a solution is referred to as dynamic programming.
Such problems involve repeatedly calculating the value of the
same subproblems to find the optimum solution.

FIBONACCI SEQUENCE
Let's find the Fibonacci sequence up to 5th term. A Fibonacci
series is a sequence of numbers in which each number is the
sum of the two preceding ones. For example, 0,1,1,2,3. Here,
each number is the sum of the two preceding numbers.
Algorithm
Let n be the number of terms.
1. If n <= 1, return 1.
2. Else, return the sum of two preceding numbers.

FIBONACCI SEQUENCE
We are calculating the Fibonacci sequence up to the 5th term.
1. The first term is 0.
2. The second term is 1.
3. The third term is a sum of 0 (from step 1) and 1 (from step

2), 1.
4. The fourth term is the sum of the third term (from step 3)

and second term (from step 2) i.e. 1 + 1 = 2.
5. The fifth term is the sum of the fourth term (from step 4)

and third term (from step 3) i.e. 2 + 1 = 3.

FIBONACCI SEQUENCE
Hence, we have the sequence 0,1,1,2,3. Here, we have used
the results of the previous steps as shown below. This is called
a dynamic programming approach.
F(0) = 0
F(1) = 1
F(2) = F(1) + F(0)
F(3) = F(2) + F(1)
F(4) = F(3) + F(2)

HOW DYNAMIC PROGRAMMING WORKS
Dynamic programming works by storing the result of
subproblems so that when their solutions are required, they
are at hand and we do not need to recalculate them.
This technique of storing the value of subproblems is called
memoization. By saving the values in the array, we save time
for computations of sub-problems we have already come
across.
var m = map(0 → 0, 1 → 1)
function fib(n)
 if key n is not in map m
 m[n] = fib(n − 1) + fib(n − 2)
 return m[n]

HOW DYNAMIC PROGRAMMING WORKS
Dynamic programming by memoization is a top-down
approach to dynamic programming. By reversing the
direction in which the algorithm works i.e. by starting from
the base case and working towards the solution, we can also
implement dynamic programming in a bottom-up manner
(tabulation).
function fib(n)
 if n = 0
 return 0
 else
 var prevFib = 0, currFib = 1
 repeat n − 1 times
 var newFib = prevFib + currFib
 prevFib = currFib
 currFib = newFib
 return currentFib

RECURSION VS DYNAMIC PROGRAMMING
Dynamic programming is mostly applied to recursive
algorithms. This is not a coincidence, most optimization
problems require recursion and dynamic programming is
used for optimization.
But not all problems that use recursion can use Dynamic
Programming. Unless there is a presence of overlapping
subproblems like in the Fibonacci sequence problem, a
recursion can only reach the solution using a divide and
conquer approach.
That is the reason why a recursive algorithm like Merge Sort
cannot use Dynamic Programming, because the subproblems
are not overlapping in any way.

RECURSION VS DYNAMIC PROGRAMMING
The recursive approach
int fib(int n)
{
 if (n <= 1)

return n;
 return fib(n - 1) +

 fib(n - 2);
}

Time complexity O(2n)
Space Complexity O(1)

The DP with tabulation
int fib(int n)
{
 int mem[n];
 mem[0] = 0;
 mem[1] = 1;
 for(int i=2; i<n; i++)
 {
 mem[i] = mem[i-2] +

 mem[i-1];
 }
 return mem[n];
}

Time complexity O(n)
Space Complexity O(1)

GREEDY ALGORITHMS VS DYNAMIC
PROGRAMMING
Greedy Algorithms are similar to dynamic programming in the
sense that they are both tools for optimization.
However, greedy algorithms look for locally optimum
solutions or in other words, a greedy choice, in the hopes of
finding a global optimum. Hence greedy algorithms can make
a guess that looks optimum at the time but becomes costly
down the line and do not guarantee a globally optimum.
Dynamic programming, on the other hand, finds the optimal
solution to subproblems and then makes an informed choice
to combine the results of those subproblems to find the most
optimum solution.

LONGEST COMMON SUBSEQUENCE
The longest common subsequence (LCS) is defined as the
longest subsequence that is common to all the given
sequences, provided that the elements of the subsequence
are not required to occupy consecutive positions within the
original sequences.
If S1 and S2 are the two given sequences then, Z is the
common subsequence of S1 and S2 if Z is a subsequence of
both S1 and S2. Furthermore, Z must be a strictly increasing
sequence of the indices of both S1 and S2.
In a strictly increasing sequence, the indices of the elements
chosen from the original sequences must be in ascending
order in Z.

LONGEST COMMON SUBSEQUENCE
If S1 = {B, C, D, A, A, C, D} then, {A, D, B} cannot be a
subsequence of S1 as the order of the elements is not the
same (i.e. not strictly increasing sequence).
If S1 = {B, C, D, A, A, C, D} and S2 = {A, C, D, B, A, C} then,
common subsequences are {B, C}, {C, D, A, C}, {D, A, C}, {A, A,
C}, {A, C}, ...
Among these subsequences, {C, D, A, C} is the longest
common subsequence. We are going to find this longest
common subsequence using dynamic programming.

LONGEST COMMON SUBSEQUENCE
Let us take two sequences:

LONGEST COMMON SUBSEQUENCE
The following steps are followed for finding the longest
common subsequence.

1. Create a table of dimension
(n+1)*(m+1) where n and m
are the lengths of X and Y
respectively. The first row
and the first column are
filled with zeros.

LONGEST COMMON SUBSEQUENCE
2. Fill each cell of the table using the following logic.
3. If the character corresponding to the current row and

current column are matching, then fill the current cell by
adding one to the diagonal element. Point an arrow to the
diagonal cell.

4. Else take the maximum value from the previous column
and previous row element for filling the current cell. Point
an arrow to the cell with maximum value. If they are equal,
point to any of them.

LONGEST COMMON SUBSEQUENCE

LONGEST COMMON SUBSEQUENCE
5. Step 2 is repeated until the table is filled

LONGEST COMMON SUBSEQUENCE
6. The value in the last row and the last column is the length

of the longest common subsequence.

LONGEST COMMON SUBSEQUENCE
7. In order to find the longest common subsequence, start

from the last element and follow the direction of the arrow.

LONGEST COMMON SUBSEQUENCE
The method of dynamic programming reduces the number of
function calls. It stores the result of each function call so that
it can be used in future calls without the need for redundant
calls.
In the above dynamic algorithm, the results obtained from
each comparison between elements of X and the elements of
Y are stored in a table so that they can be used in future
computations.
So, the time taken by a dynamic approach is the time taken to
fill the table (i.e. O(m*n)). Whereas, the recursion algorithm
has the complexity of 2max(m, n).

THE KNAPSACK PROBLEM
Given N items where each item has some weight and profit
associated with it and also given a bag with capacity W, [i.e.,
the bag can hold at most W weight in it]. The task is to put the
items into the bag such that the sum of profits associated
with them is the maximum possible.
Note: The constraint here is we can either put an item
completely into the bag or cannot put it at all [It is not
possible to put a part of an item into the bag].

THE KNAPSACK PROBLEM
A simple solution is to consider all subsets of items and
calculate the total weight and profit of all subsets. Consider
the only subsets whose total weight is smaller than W. From
all such subsets, pick the subset with maximum profit.
Optimal Substructure: To consider all subsets of items, there
can be two cases for every item.
• Case 1: The item is included in the optimal subset.
• Case 2: The item is not included in the optimal set.

THE KNAPSACK PROBLEM
Follow the below steps to solve the problem:
The maximum value obtained from N items is the max of the
following two values.
• Case 1 (include the Nth item): Value of the Nth item plus

maximum value obtained by remaining N-1 items and
remaining weight i.e. (W — weight of the Nth item).
• Case 2 (exclude the Nth item): Maximum value obtained by

N-1 items and W weight.
• If the weight of the Nth item is greater than W, then the Nth

item cannot be included and Case 2 is the only possibility.

THE KNAPSACK PROBLEM
Naïve recursive implementation
int knapSack(int W, int wt[], int val[], int n)
{
 if (n == 0 || W == 0)
 return 0;
 if (wt[n - 1] > W)
 return knapSack(W, wt, val, n - 1);
 else
 return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n -
1),
 knapSack(W, wt, val, n - 1));
}

THE KNAPSACK PROBLEM
Time Complexity: O(2N). Auxiliary Space: O(N).
Note: It should be noted that the above function using
recursion computes the same subproblems again and again.
As there are repetitions of the same subproblem again and
again we can implement the following idea to solve the
problem.
Since subproblems are evaluated again, this problem has
Overlapping Sub-problems property. So the Knapsack
problem has both properties of a dynamic programming
problem. Like other typical DP problems, re-computation of
the same subproblems can be avoided by constructing a
temporary array K[][] in a bottom-up manner.

THE KNAPSACK PROBLEM
Let, weight[] = {1, 2, 3}, profit[] = {10, 15, 40}, Capacity = 6
If no element is filled, then the possible profit is 0.

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1

2

3

THE KNAPSACK PROBLEM
For filling the first item in the bag: If we follow the above
mentioned procedure, the table will look like the following.

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2

3

THE KNAPSACK PROBLEM
For filling the second item:
For j>=2, then maximum profit is max (DP[1][j], w[2]+DP[1]
[j-2])

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2 0 10 15 25 25 25 25

3

THE KNAPSACK PROBLEM
For filling the third item:
For j>=3, then maximum profit is max (DP[2][j], w[3]+DP[2]
[j-3])

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2 0 10 15 25 25 25 25

3 0 10 15 40 50 55 65

THE KNAPSACK PROBLEM
Time Complexity: O(N*W). where N is the number of elements
and W is capacity.
Auxiliary Space: O(N*W). The use of a 2-D array of size N*W.
Space optimized Approach for the Knapsack Problem using
Dynamic Programming:
For calculating the current row of the DP[] array we require
only previous row, but if we start traversing the rows from
right to left then it can be done with a single row only. In this
case we use 1-D array of size W.

PRACTICE: LONGEST COMMON SUBSEQUENCE
Problem. You have two strings with lengths from 1 to 1000 symbols.
Find the longest common subsequence of these two strings.
Task. Create a program using C/C++/Python to solve this problem.
Input. Two strings are divided by space.
Output. The length of the longest common subsequence.

PRACTICE: LONGEST COMMON SUBSEQUENCE
Code example:
#include <iostream>
#define MAX 1000

char S[MAX];
int A[MAX][MAX];

int main()
{
 cin >> S;

 /*your code here*/

 cout << A[MAX-1][MAX-1];

 return 0;
}

THANK
YOU!

	Dynamic programming
	What is dynamic programming?
	Fibonacci sequence
	Fibonacci sequence (2)
	Fibonacci sequence (3)
	How Dynamic Programming Works
	How Dynamic Programming Works (2)
	Recursion vs Dynamic Programming
	Recursion vs Dynamic Programming (2)
	Greedy Algorithms vs Dynamic Programming
	Longest Common Subsequence
	Longest Common Subsequence (2)
	Longest Common Subsequence (3)
	Longest Common Subsequence (4)
	Longest Common Subsequence (5)
	Longest Common Subsequence (6)
	Longest Common Subsequence (7)
	Longest Common Subsequence (8)
	Longest Common Subsequence (9)
	Longest Common Subsequence (10)
	The Knapsack problem
	The Knapsack problem (2)
	The Knapsack problem (3)
	The Knapsack problem (4)
	The Knapsack problem (5)
	The Knapsack problem (6)
	The Knapsack problem (7)
	The Knapsack problem (8)
	The Knapsack problem (9)
	The Knapsack problem (10)
	Practice: longest common subsequence
	Practice: longest common subsequence (2)
	Thank you!

