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WHAT IS DYNAMIC PROGRAMMING?
Dynamic Programming is a technique in computer 
programming that helps to efficiently solve a class of 
problems with overlapping subproblems and optimal 
substructure properties.
If any problem can be divided into subproblems, which in turn 
are divided into smaller subproblems, and if there are 
overlapping among these subproblems, then the solutions to 
these subproblems can be saved for future reference. Thus, 
the efficiency of the CPU can be enhanced. This method of 
solving a solution is referred to as dynamic programming.
Such problems involve repeatedly calculating the value of the 
same subproblems to find the optimum solution.



FIBONACCI SEQUENCE
Let's find the Fibonacci sequence up to 5th term. A Fibonacci 
series is a sequence of numbers in which each number is the 
sum of the two preceding ones. For example, 0,1,1,2,3. Here, 
each number is the sum of the two preceding numbers.
Algorithm
Let n be the number of terms.
1. If n <= 1, return 1.
2. Else, return the sum of two preceding numbers.



FIBONACCI SEQUENCE
We are calculating the Fibonacci sequence up to the 5th term.
1. The first term is 0.
2. The second term is 1.
3. The third term is a sum of 0 (from step 1) and 1 (from step 

2), 1.
4. The fourth term is the sum of the third term (from step 3) 

and second term (from step 2) i.e. 1 + 1 = 2.
5. The fifth term is the sum of the fourth term (from step 4) 

and third term (from step 3) i.e. 2 + 1 = 3.



FIBONACCI SEQUENCE
Hence, we have the sequence 0,1,1,2,3. Here, we have used 
the results of the previous steps as shown below. This is called 
a dynamic programming approach.
F(0) = 0
F(1) = 1
F(2) = F(1) + F(0)
F(3) = F(2) + F(1)
F(4) = F(3) + F(2)



HOW DYNAMIC PROGRAMMING WORKS
Dynamic programming works by storing the result of 
subproblems so that when their solutions are required, they 
are at hand and we do not need to recalculate them.
This technique of storing the value of subproblems is called 
memoization. By saving the values in the array, we save time 
for computations of sub-problems we have already come 
across.
var m = map(0 → 0, 1 → 1)
function fib(n)
    if key n is not in map m 
        m[n] = fib(n − 1) + fib(n − 2)
    return m[n]



HOW DYNAMIC PROGRAMMING WORKS
Dynamic programming by memoization is a top-down 
approach to dynamic programming. By reversing the 
direction in which the algorithm works i.e. by starting from 
the base case and working towards the solution, we can also 
implement dynamic programming in a bottom-up manner 
(tabulation).
function fib(n)
    if n = 0
        return 0
    else
        var prevFib = 0, currFib = 1
        repeat n − 1 times
            var newFib = prevFib + currFib
            prevFib = currFib
            currFib  = newFib
    return currentFib



RECURSION VS DYNAMIC PROGRAMMING
Dynamic programming is mostly applied to recursive 
algorithms. This is not a coincidence, most optimization 
problems require recursion and dynamic programming is 
used for optimization.
But not all problems that use recursion can use Dynamic 
Programming. Unless there is a presence of overlapping 
subproblems like in the Fibonacci sequence problem, a 
recursion can only reach the solution using a divide and 
conquer approach.
That is the reason why a recursive algorithm like Merge Sort 
cannot use Dynamic Programming, because the subproblems 
are not overlapping in any way.



RECURSION VS DYNAMIC PROGRAMMING
The recursive approach
int fib(int n)
{
    if (n <= 1) 

return n;
    return fib(n - 1) + 

    fib(n - 2);
}

Time complexity O(2n) 
Space Complexity O(1)

The DP with tabulation
int fib(int n)
{
    int mem[n];
    mem[0] = 0;
    mem[1] = 1;
    for(int i=2; i<n; i++)
    {
        mem[i] = mem[i-2] + 

    mem[i-1];
    }
    return mem[n];
}

Time complexity O(n)
Space Complexity O(1)



GREEDY ALGORITHMS VS DYNAMIC 
PROGRAMMING
Greedy Algorithms are similar to dynamic programming in the 
sense that they are both tools for optimization.
However, greedy algorithms look for locally optimum 
solutions or in other words, a greedy choice, in the hopes of 
finding a global optimum. Hence greedy algorithms can make 
a guess that looks optimum at the time but becomes costly 
down the line and do not guarantee a globally optimum.
Dynamic programming, on the other hand, finds the optimal 
solution to subproblems and then makes an informed choice 
to combine the results of those subproblems to find the most 
optimum solution.



LONGEST COMMON SUBSEQUENCE
The longest common subsequence (LCS) is defined as the 
longest subsequence that is common to all the given 
sequences, provided that the elements of the subsequence 
are not required to occupy consecutive positions within the 
original sequences.
If S1 and S2 are the two given sequences then, Z is the 
common subsequence of S1 and S2 if Z is a subsequence of 
both S1 and S2. Furthermore, Z must be a strictly increasing 
sequence of the indices of both S1 and S2.
In a strictly increasing sequence, the indices of the elements 
chosen from the original sequences must be in ascending 
order in Z.



LONGEST COMMON SUBSEQUENCE
If S1 = {B, C, D, A, A, C, D} then, {A, D, B} cannot be a 
subsequence of S1 as the order of the elements is not the 
same (i.e. not strictly increasing sequence).
If S1 = {B, C, D, A, A, C, D} and S2 = {A, C, D, B, A, C} then, 
common subsequences are {B, C}, {C, D, A, C}, {D, A, C}, {A, A, 
C}, {A, C}, ...
Among these subsequences, {C, D, A, C} is the longest 
common subsequence. We are going to find this longest 
common subsequence using dynamic programming.



LONGEST COMMON SUBSEQUENCE
Let us take two sequences:



LONGEST COMMON SUBSEQUENCE
The following steps are followed for finding the longest 
common subsequence.

1. Create a table of dimension 
(n+1)*(m+1) where n and m 
are the lengths of X and Y 
respectively. The first row 
and the first column are 
filled with zeros.



LONGEST COMMON SUBSEQUENCE
2. Fill each cell of the table using the following logic.
3. If the character corresponding to the current row and 

current column are matching, then fill the current cell by 
adding one to the diagonal element. Point an arrow to the 
diagonal cell.

4. Else take the maximum value from the previous column 
and previous row element for filling the current cell. Point 
an arrow to the cell with maximum value. If they are equal, 
point to any of them.



LONGEST COMMON SUBSEQUENCE



LONGEST COMMON SUBSEQUENCE
5. Step 2 is repeated until the table is filled



LONGEST COMMON SUBSEQUENCE
6. The value in the last row and the last column is the length 

of the longest common subsequence.



LONGEST COMMON SUBSEQUENCE
7. In order to find the longest common subsequence, start 

from the last element and follow the direction of the arrow.



LONGEST COMMON SUBSEQUENCE
The method of dynamic programming reduces the number of 
function calls. It stores the result of each function call so that 
it can be used in future calls without the need for redundant 
calls.
In the above dynamic algorithm, the results obtained from 
each comparison between elements of X and the elements of 
Y are stored in a table so that they can be used in future 
computations.
So, the time taken by a dynamic approach is the time taken to 
fill the table (i.e. O(m*n)). Whereas, the recursion algorithm 
has the complexity of 2max(m, n).



THE KNAPSACK PROBLEM
Given N items where each item has some weight and profit 
associated with it and also given a bag with capacity W, [i.e., 
the bag can hold at most W weight in it]. The task is to put the 
items into the bag such that the sum of profits associated 
with them is the maximum possible. 
Note: The constraint here is we can either put an item 
completely into the bag or cannot put it at all [It is not 
possible to put a part of an item into the bag].



THE KNAPSACK PROBLEM
A simple solution is to consider all subsets of items and 
calculate the total weight and profit of all subsets. Consider 
the only subsets whose total weight is smaller than W. From 
all such subsets, pick the subset with maximum profit.
Optimal Substructure: To consider all subsets of items, there 
can be two cases for every item. 
• Case 1: The item is included in the optimal subset.
• Case 2: The item is not included in the optimal set.



THE KNAPSACK PROBLEM
Follow the below steps to solve the problem:
The maximum value obtained from N items is the max of the 
following two values. 
• Case 1 (include the Nth item): Value of the Nth item plus 

maximum value obtained by remaining N-1 items and 
remaining weight i.e. (W — weight of the Nth item).
• Case 2 (exclude the Nth item): Maximum value obtained by 

N-1 items and W weight.
• If the weight of the Nth item is greater than W, then the Nth 

item cannot be included and Case 2 is the only possibility.



THE KNAPSACK PROBLEM
Naïve recursive implementation
int knapSack(int W, int wt[], int val[], int n) 
{ 
    if (n == 0 || W == 0) 
        return 0; 
    if (wt[n - 1] > W) 
        return knapSack(W, wt, val, n - 1); 
    else
        return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 
1), 
                                          knapSack(W, wt, val, n - 1)); 
} 



THE KNAPSACK PROBLEM
Time Complexity: O(2N). Auxiliary Space: O(N).
Note: It should be noted that the above function using 
recursion computes the same subproblems again and again.
As there are repetitions of the same subproblem again and 
again we can implement the following idea to solve the 
problem.
Since subproblems are evaluated again, this problem has 
Overlapping Sub-problems property. So the Knapsack 
problem has both properties of a dynamic programming 
problem. Like other typical DP problems, re-computation of 
the same subproblems can be avoided by constructing a 
temporary array K[][] in a bottom-up manner. 



THE KNAPSACK PROBLEM
Let, weight[] = {1, 2, 3}, profit[] = {10, 15, 40}, Capacity = 6
If no element is filled, then the possible profit is 0.

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1

2

3



THE KNAPSACK PROBLEM
For filling the first item in the bag: If we follow the above 
mentioned procedure, the table will look like the following.

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2

3



THE KNAPSACK PROBLEM
For filling the second item:  
For j>=2, then maximum profit is max (DP[1][j], w[2]+DP[1]
[j-2])

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2 0 10 15 25 25 25 25

3



THE KNAPSACK PROBLEM
For filling the third item:  
For j>=3, then maximum profit is max (DP[2][j], w[3]+DP[2]
[j-3])

Weight --
>

Item
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 10 10 10 10 10 10

2 0 10 15 25 25 25 25

3 0 10 15 40 50 55 65



THE KNAPSACK PROBLEM
Time Complexity: O(N*W). where N is the number of elements 
and W is capacity. 
Auxiliary Space: O(N*W). The use of a 2-D array of size N*W.
Space optimized Approach for the Knapsack Problem using 
Dynamic Programming:
For calculating the current row of the DP[] array we require 
only previous row, but if we start traversing the rows from 
right to left then it can be done with a single row only. In this 
case we use 1-D array of size W.



PRACTICE: LONGEST COMMON SUBSEQUENCE
Problem. You have two strings with lengths from 1 to 1000 symbols. 
Find the longest common subsequence of these two strings.
Task. Create a program using C/C++/Python to solve this problem.
Input. Two strings are divided by space.
Output. The length of the longest common subsequence.



PRACTICE: LONGEST COMMON SUBSEQUENCE
Code example:
#include <iostream>
#define MAX 1000

char S[MAX];
int A[MAX][MAX];

int main()
{
    cin >> S;

    /*your code here*/

    cout << A[MAX-1][MAX-1];

    return 0;
}



THANK 
YOU!
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