DYNAMIC PROGRAMMING

e WHAT IS DYNAMIC PROGRAMMING?

e FIBONACCI SEQUENCE

e HOW DYNAMIC PROGRAMMING WORKS

e RECURSION VS DYNAMIC PROGRAMMING
e GREEDY ALGORITHMS VS DYNAMIC

PROGRAMMING
LONGEST COMMON SUBSEQUENCE
THE KNAPSACK PROBLEM

PRACTICE; LONGEST COMMON SUBSEQUENCE
Author: prof. Yevhenii Borodavka

AN

P

N\

\

P~

> WHAT IS DYNAMIC PROGRAMMING?

7

Dynamic Programming is a technique in computer
orogramming that helps to efficiently solve a class of
oroblems with overlapping subproblems and optimal
substructure properties.

If any problem can be divided into subproblems, which in turn
are divided into smaller subproblems, and if there are
overlapping among these subproblems, then the solutions to

~ these subproblems can be saved for future reference. Thus, o

~ solving a solution is referred to as dynamic programming.

such problems involve repeatedly calculating the value of the
same Sstiboroblems to find the ontimum solution

/

/o the efficiency of the CPU can be enhanced. This method of JA

Pam

N

7N\

AN

ran

N

/,\
\//

\\

N\
V"

77\

Fam

FIBONACCI SEQUENCE

/.~ Let's find the Fibonacci sequence up to 5th term. A Fibonacci

series is a sequence of numbers in which each number is the
sum of the two preceding ones. For example, 0,1,1,2,3. Here,
each number is the sum of the two preceding numbers.

Algorithm
Let n be the number of terms.

1.If n<=1, return 1. ~
2. Else, return the sum of two preceding numbers.)

AN

> FIBONACCI SEQUENCE

P

.~ We are calculating the Fibonacci sequence up to the 5th term.

P

1.
2.
3.

AN

The first term is O.
The second term is 1.

The third term is a sum of 0 (from step 1) and 1 (from step
2), 1.

. The fourth term is the sum of the third term (from step 3)

and second term (from step 2)i.e. 1+ 1 = 2. B

J

. The fifth term is the sum of the fourth term (from step 4) o

and third term (from step 3)i.e. 2+ 1 = 3.

\

N\

AN ~\
. ~ Hence, we have the sequence 0,1,1,2,3. Here, we have used

)

FIBONACCI SEQUENCE

7N\

the results of the previous steps as shown below. This is called
a dynamic programming approach.

(0)= 0

F(1)=1

F(2) = F(1) + F(0)

"(3) = F(2) + F(1))
(4) = F(3) + F(2) /,

7\

/ ~
|

\\ /‘

V.

> HOW DYNAMIC PROGRAMMING WORKS

\ 7\
.~ Dynamic programming works by storing the result of

S subproblems so that when their solutions are required, they
are at hand and we do not need to recalculate them.

This technique of storing the value of subproblems is called
\ memoization. By saving the values in the array, we save time
O for computations of sub-problems we have already come

dCrosSsS.

‘ 2 var m = map(0 - 0, 1 - 1)

/" function fib(n))
\ /L 1if key n 1s not in map m | /
| m[(n] = fib(n - 1) + fib(n - 2)

7\

7~ return m[n] ®

\ /|

> HOW DYNAMIC PROGRAMMING WORKS

\ N\
.~ Dynamic programming by memoization is a top-down

S approach to dynamic programming. By reversing the
direction in which the algorithm works i.e. by starting from
the base case and working towards the solution, we can also
implement dynamic programming in a bottom-up manner

N
1 (tabulation).
f\ function fib(n)
if n=20
O return 0 ®
/,\ else)
var prevfFib = 0, currFib =1 =
\ /C\ repeat n - 1 times ‘/
| var newFib = prevFib + currFib

O prevFib = currFib
currFib = newFib :

o+ irirrnm ~riirrandtEa K

> RECURSION VS DYNAMIC PROGRAMMING

.~ Dynamic programming is mostly applied to recursive

&S algorithms. This is not a coincidence, most optimization
problems require recursion and dynamic programming is
used for optimization.

\ But not all problems that use recursion can use Dynamic
e Programming. Unless there is a presence of overlapping
. subproblems like in the Fibonacci sequence problem, a
| ~ recursion can only reach the solution using a divide and -
//A conquer approach. J
\ D That is the reason why a recursive algorithm like Merge Sort| /
cannot use Dynamic Programming, because the subproblems |/ _

are not overlannina in anv wav.

N

N

I

© RECURSION VS DYNAMIC PROGRAMMING

I

The recursive approach

fib(n)
{
1T (n <= 1)
return n;
return fib(n - 1) +
fib(n - 2);
}

Time complexity O(2")
Space Complexity O(1)

The DP with tabulation

fib(n)
{
mem[n];
mem[O] = 0O;
mem[l] = 1;
for(i=2:; i<n; i++)
{
mem[1] = mem[i-2] +
mem[1i-1];

}

return mem[n];

}
Time complexity O(n)
Space Complexity O(1)

| GREEDY ALGORITHMS VS DYNAMIC
\\” PROGRAMMING

/.~ Greedy Algorithms are similar to dynamic programming in the
&S sense that they are both tools for optimization.

However, greedy algorithms look for locally optimum

solutions or in other words, a greedy choice, in the hopes of
\ finding a global optimum. Hence greedy algorithms can make
e a guess that looks optimum at the time but becomes costly
. down the line and do not guarantee a globally optimum.

P

l i Dynamic programming, on the other hand, finds the optimal J
solution to subproblems and then makes an informed choice /.

\ / i
? to combine the results of those subproblems to find the most | /

optimum solution. ~

> LONGEST COMMON SUBSEQUENCE

.~ The longest common subsequence (LCS) is defined as the
S longest subsequence that is common to all the given
sequences, provided that the elements of the subsequence
are not required to occupy consecutive positions within the
original sequences.

e If ST and S2 are the two given sequences then, Z is the
. common subsequence of S1 and S2 if Z is a subsequence of
| ~ both S1 and S2. Furthermore, Z must be a strictly increasing o

/ sequence of the indices of both S1 and S2. J

‘ R
\ ? In a strictly increasing sequence, the indices of the elements /

chosen from the original sequences must be in ascending |/ _
order in 7. '

7N

N 2~
A1 1 2~

7N

N\

[,\
/,\
(/5

LONGEST COMMON SUBSEQUENCE

If S1 =4{B, C, D, A, A C, D} then, {A, D, B} cannot be a
subsequence of S1 as the order of the elements is not the
same (i.e. not strictly increasing sequence).

If S1={B, C, D, A A C, D} and S2 = {A, C, D, B, A, C} then,
common subsequences are {B, C}, {C, D, A, C}, {D, A, C}, {A, A,
ChH {A C}, ...

Among these subsequences, {C, D, A, C} is the longest
common subsequence. We are going to find this longest j‘
o

7N\

common subsequence using dynamic programming.

7N

/

7N

N
L > LONGEST COMMON SUBSEQUENCE

0O)
1 ~ Let us take two sequences:

©®)

: j efefeofa
1,

Il \

" LONGEST COMMON SUBSEQUENCE

.~ The following steps are followed for finding the longest
. common subsequence.

1. Create a table of dimension
(n+1)*(M+1) where n and m
are the lengths of Xand Y
g respectively. The first row
- and the first column are
filled with zeros.

> LONGEST COMMON SUBSEQUENCE

N\

| 2. Fill each cell of the table using the following logic.

7N

3. If the character corresponding to the current row and
current column are matching, then fill the current cell by
adding one to the diagonal element. Point an arrow to the

\ diagonal cell.

2 4. Else take the maximum value from the previous column
® and previous row element for filling the current cell. Point
‘ /: an arrow to the cell with maximum value. If they are equal, j‘
\ / point to any of them. o
|

/ ~

I\

> LONGEST COMMON SUBSEQUENCE

1)

> LONGEST COMMON SUBSEQUENCE

1\° 5. Step 2 is repeated until the table is filled

o~

1)

> LONGEST COMMON SUBSEQUENCE

| 6. The value in the last row and the last column is the length
o of the longest common subsequence.

PN

1)

> LONGEST COMMON SUBSEQUENCE

N\

| 7. In order to find the longest common subsequence, start

from the last element and follow the direction of the arrow.

Select the cells
= with diagonal —>
arrows

PN

> LONGEST COMMON SUBSEQUENCE

/.~ The method of dynamic programming reduces the number of

A function calls. It stores the result of each function call so that
it can be used in future calls without the need for redundant
calls.

\ In the above dynamic algorithm, the results obtained from
e each comparison between elements of X and the elements of
. Y are stored in a table so that they can be used in future
| » computations. o

/)

/A So, the time taken by a dynamic approach is the time takento /-
¢ fill the table (i.e. O(m*n)). Whereas, the recursion algorithm /
hvas the complexity of 2maxm. n), ~

\

N Y

2 P
o~

P

\

P

/-
A

THE KNAPSACK PROBLEM

Given N items where each item has some weight and profit
associated with it and also given a bag with capacity W, [i.e.,
the bag can hold at most W weight in it]. The task is to put the
items into the bag such that the sum of profits associated
with them is the maximum possible.

Note: The constraint here is we can either put an item
completely into the bag or cannot put it at all [It is not
possible to put a part of an item into the bag].

P

\>;>

N\

> THE KNAPSACK PROBLEM

.~ A simple solution is to consider all subsets of items and

7N

N\

7N
7N

\

calculate the total weight and profit of all subsets. Consider
the only subsets whose total weight is smaller than W. From
all such subsets, pick the subset with maximum profit.

Optimal Substructure: To consider all subsets of items, there
can be two cases for every item.

* Case 1: The item is included in the optimal subset.

/~ ®Case 2: The item is not included in the optimal set.
/.
|

7N

/

A\ /

> THE KNAPSACK PROBLEM

N\
/| Follow the below steps to solve the problem:

Fan

The maximum value obtained from N items is the max of the
following two values.

* Case 1 (include the Nth item): Value of the Nth item plus
maximum value obtained by remaining N-1 items and
remaining weighti.e. (W — weight of the Nth item).

_ *(Case 2 (exclude the Nth item): Maximum value obtained by
~ N-1 items and W weight.

\ /-, +1f the weight of the Nth item is greater than W, then the Nth /A
| stem cannot be included and Case 2 is the only possibility.

N

R
\ THE KNAPSACK PROBLEM

N\ O . :
/L Naive recursive implementation

O knapSack(t W, i wt[], valll, n)

{
f(n==0]|| W==0)
N return O;
O i (wt[n-1]1>W)
- return knapSack(W, wt, val, n - 1);

o else
//f\ return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n -
!/ /a1),

D knapSack(W, wt, val, n - 1));

/g

> THE KNAPSACK PROBLEM

f | "~ Time Complexity: O(2N). Auxiliary Space: O(N).

P

Note: It should be noted that the above function using
recursion computes the same subproblems again and again.

As there are repetitions of the same subproblem again and
again we can implement the following idea to solve the
problem.

7N

N

| _ Since subproblems are evaluated again, this problem has

/~ Overlapping Sub-problems property. So the Knapsack |

\ / problem has both properties of a dynamic programming(¢
| problem. Like other typical DP problems, re-computation of

the same subproblems can be avoided by constructing a| o

VRN 1 — T~ S BaE BaE owm W N I/r1r1 :IA pr— IAALLAM B B B s o B B . B

R
\l THE KNAPSACK PROBLEM

\ '
.~ Let, weight[1=A{1, 2, 3}, profit[] = {10, 15, 40}, Capacity =6

'

If no element is filled, then the possible profit is 0.

Weight --
> 0 1 2 3 4 5 6
) Item
0 0 0 0 0 0 0 0

/7 l

> THE KNAPSACK PROBLEM

N N\
.~ For filling the first item in the bag: If we follow the above
S mentioned procedure, the table will look like the following.

7\

Weight --
> 0 1 2 3 4 5 6
Item
0 0 0 0 0 0 0 0

/ 1 0 10 | 10 | 10 | 10 | 10 | 10 /

O 2
- /

> THE KNAPSACK PROBLEM
L\

.~ Forfilling the second item:

I

~or |>=2, then maximum profit is max (DP[1][j], w[2]+DP[1]

IR4),
Weight --
> 0 | 1 2 | 3| 4| 5 | 6
) Item
i 0 ol ol ol o] o] o] o
/A 1 0o |10 10|10 | 10 | 10 | 10
\/rl\ 2 0 [10 | 15| 25 | 25 | 25 | 25
4 3

> THE KNAPSACK PROBLEM
L\

.~ For filling the third item:

I

or |>=3, then maximum profit is max (DP[2][j], w[3]+DP[2]

j-31)
Weight --

> 0 | 1 2 | 3| 4| 5 | 6

) Item
i 0 ol ol ol o] o] o] o
/A 1 0o |10 10|10 | 10 | 10 | 10
\ / T 2 0 [10 | 15| 25 | 25 | 25 | 25
/ 3 O | 10 | 15 | 40 | 50 | 55 | 65

A\ /

> THE KNAPSACK PROBLEM

L~ Time Complexity: O(N*W). where N is the number of elements
A and W is capacity.

Auxiliary Space: O(N*W). The use of a 2-D array of size N*WV.

Space optimized Approach for the Knapsack Problem using

) Dynamic Programming:

N\

R For calculating the current row of the DP[] array we require
_only previous row, but if we start traversing the rows from _

‘ /,\ right to left then it can be done with a single row only. In this)
/_case we use 1-D array of size W. (7

/ ~
|

N\

© PRACTICE: LONGEST COMMON SUBSEQUENCE

)
I

Problem. You have two strings with lengths from 1 to 1000 symbols.
Find the longest common subsequence of these two strings.

Task. Create a program using C/C++/Python to solve this problem.

AA M

I

Input. Two strings are divided by space.
\ Output. The length of the longest common subsequence.

k

\
|

\\

© PRACTICE: LONGEST COMMON SUBSEQUENCE

O

16 O)

O

@)

Code example:

#include <iostream>
#define MAX 1000

S[MAXT];
A[MAX] [MAX];

main()

cin >> S;

/*your code here*/

cout << A[MAX-1][MAX-11;

return 0;

	Dynamic programming
	What is dynamic programming?
	Fibonacci sequence
	Fibonacci sequence (2)
	Fibonacci sequence (3)
	How Dynamic Programming Works
	How Dynamic Programming Works (2)
	Recursion vs Dynamic Programming
	Recursion vs Dynamic Programming (2)
	Greedy Algorithms vs Dynamic Programming
	Longest Common Subsequence
	Longest Common Subsequence (2)
	Longest Common Subsequence (3)
	Longest Common Subsequence (4)
	Longest Common Subsequence (5)
	Longest Common Subsequence (6)
	Longest Common Subsequence (7)
	Longest Common Subsequence (8)
	Longest Common Subsequence (9)
	Longest Common Subsequence (10)
	The Knapsack problem
	The Knapsack problem (2)
	The Knapsack problem (3)
	The Knapsack problem (4)
	The Knapsack problem (5)
	The Knapsack problem (6)
	The Knapsack problem (7)
	The Knapsack problem (8)
	The Knapsack problem (9)
	The Knapsack problem (10)
	Practice: longest common subsequence
	Practice: longest common subsequence (2)
	Thank you!

