

GRAPH MINIMUM SPANNING TREE

- SPANNING TREE
- EXAMPLE OF A SPANNING TREE
- MINIMUM SPANNING TREE
- PRIM'S ALGORITHM
- KRUSKAL'S ALGORITHM
- PRACTICE: ISLANDS CONNECTION PROBLEM

Author: prof. Yevhenii Borodavka

SPANNING TREE

A spanning tree is a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a minimum possible number of edges. If a vertex is missed, then it is not a spanning tree.

The edges may or may not have weights assigned to them.

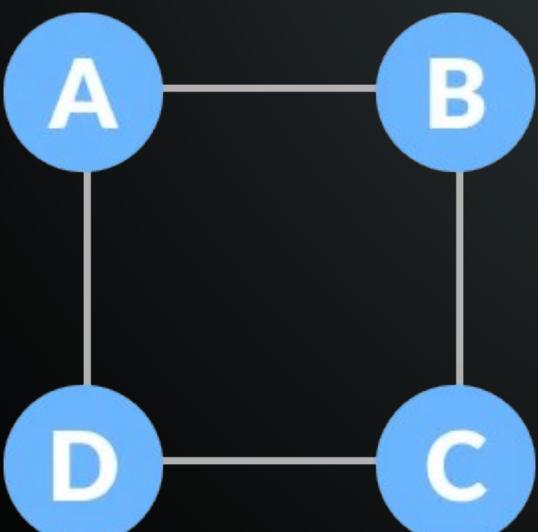
The total number of spanning trees with n vertices that can be created from a complete graph is equal to $n^{(n-2)}$.

If we have $n=4$, the maximum number of possible spanning trees is equal to $4^{4-2}=16$. Thus, 16 spanning trees can be formed from a complete graph with 4 vertices.

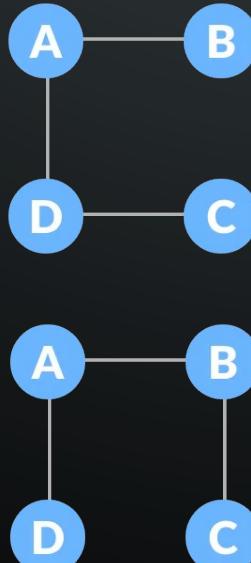
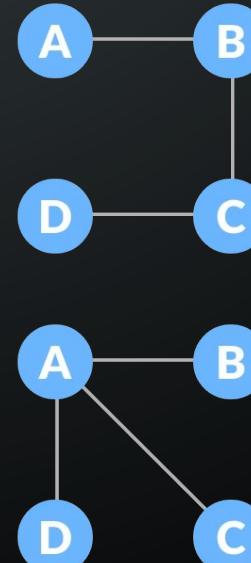
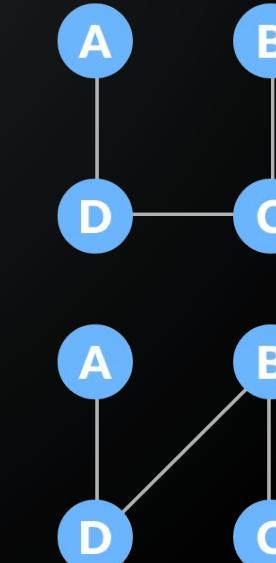
EXAMPLE OF A SPANNING TREE

Let's understand the spanning tree with examples below.

Let the original graph be:



Some of the possible spanning trees that can be created from the above graph are:

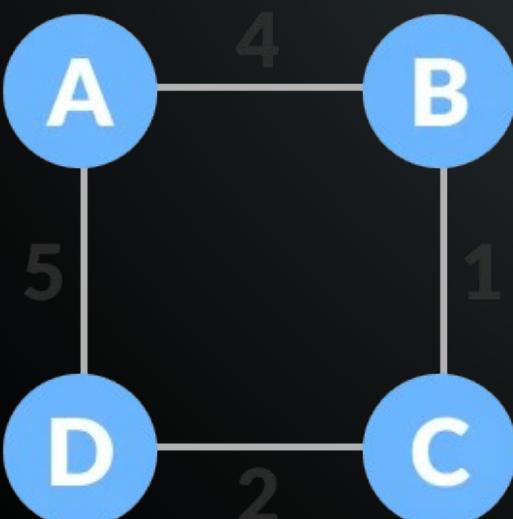


MINIMUM SPANNING TREE

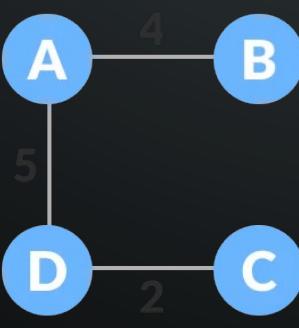
A minimum spanning tree is a spanning tree in which the sum of the weight of the edges is as minimum as possible.

The initial graph is:

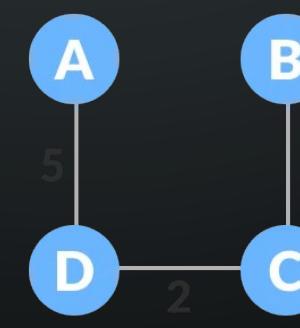
The possible spanning trees from the above graph are:



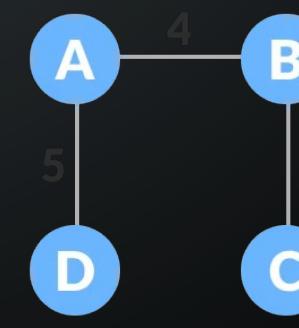
sum = 11



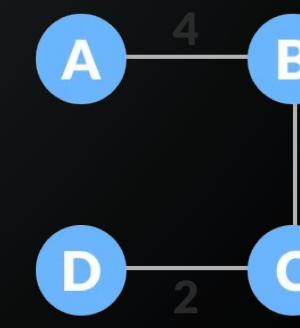
sum = 8



sum = 10

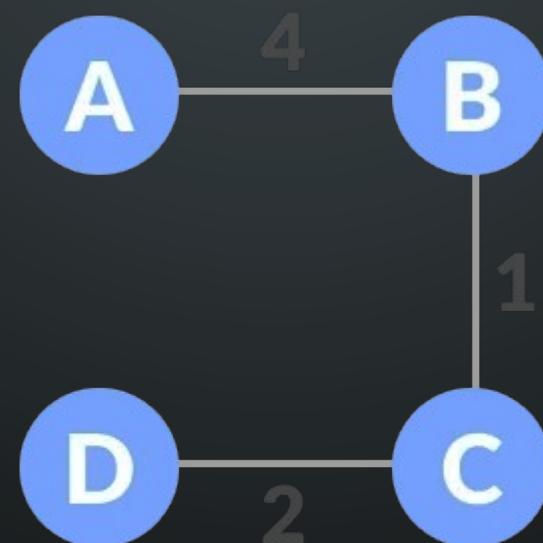


sum = 7



MINIMUM SPANNING TREE

The minimum spanning tree from the above spanning trees is:



sum = 7

PRIM'S ALGORITHM

Prim's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which:

- form a tree that includes every vertex
- has the minimum sum of weights among all the trees that can be formed from the graph

HOW PRIM'S ALGORITHM WORKS

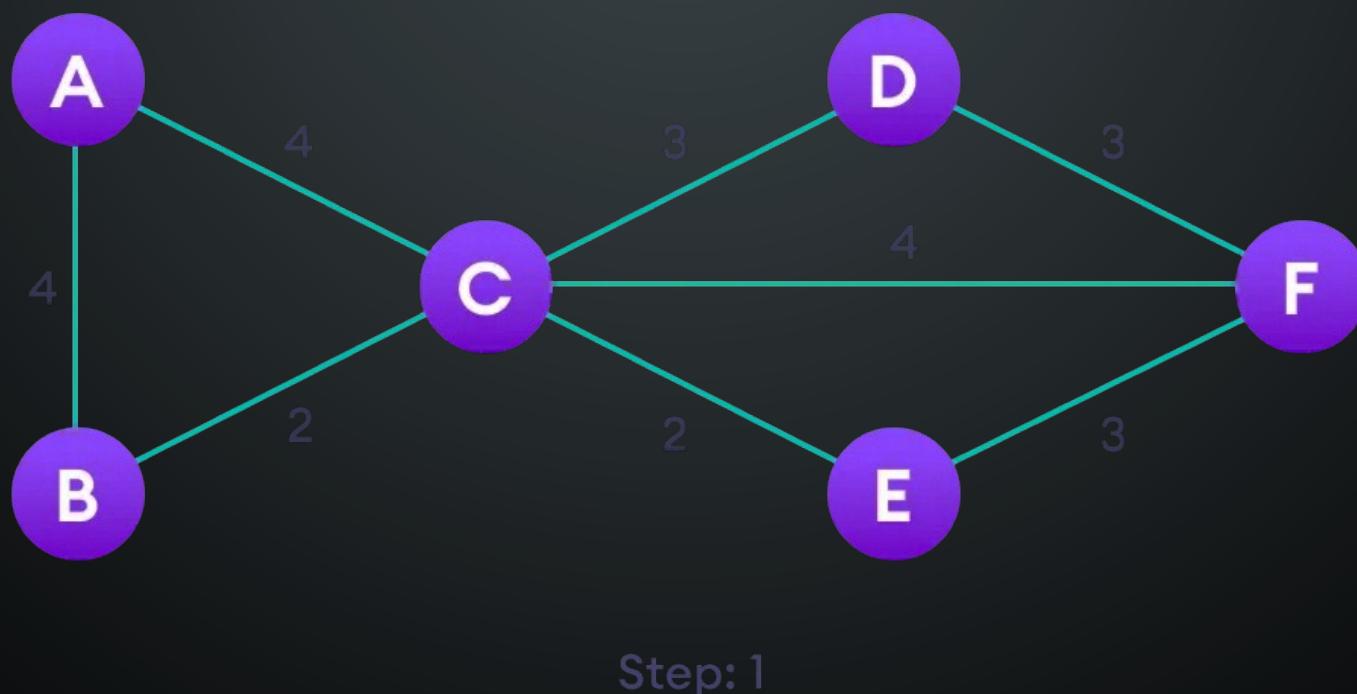
It falls under a class of algorithms called greedy algorithms that find the local optimum in the hopes of finding a global optimum.

We start from one vertex and keep adding edges with the lowest weight until we reach our goal.

The steps for implementing Prim's algorithm are as follows:

1. Initialize the minimum spanning tree with a vertex chosen at random.
2. Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree.
3. Keep repeating step 2 until we get a minimum spanning

EXAMPLE OF PRIM'S ALGORITHM

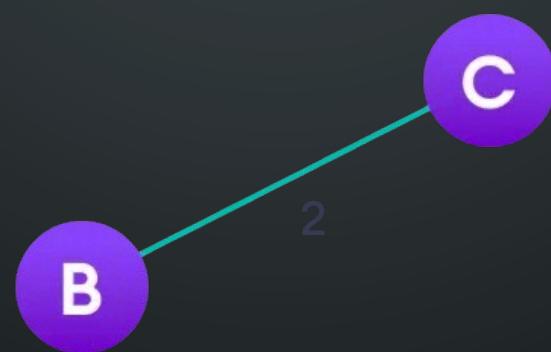


EXAMPLE OF PRIM'S ALGORITHM

C

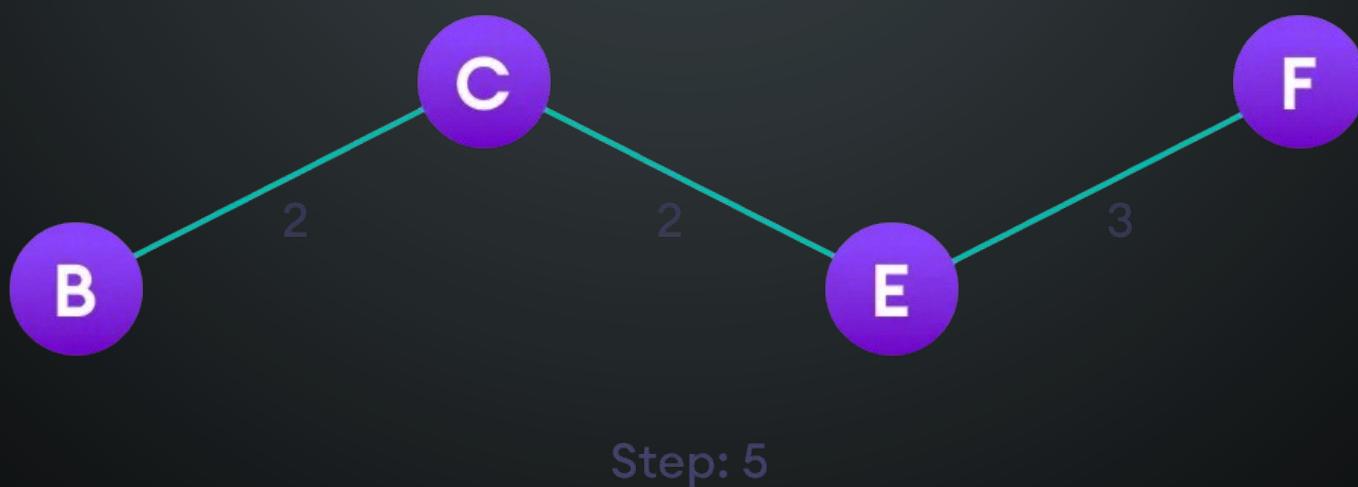
Step: 2

EXAMPLE OF PRIM'S ALGORITHM

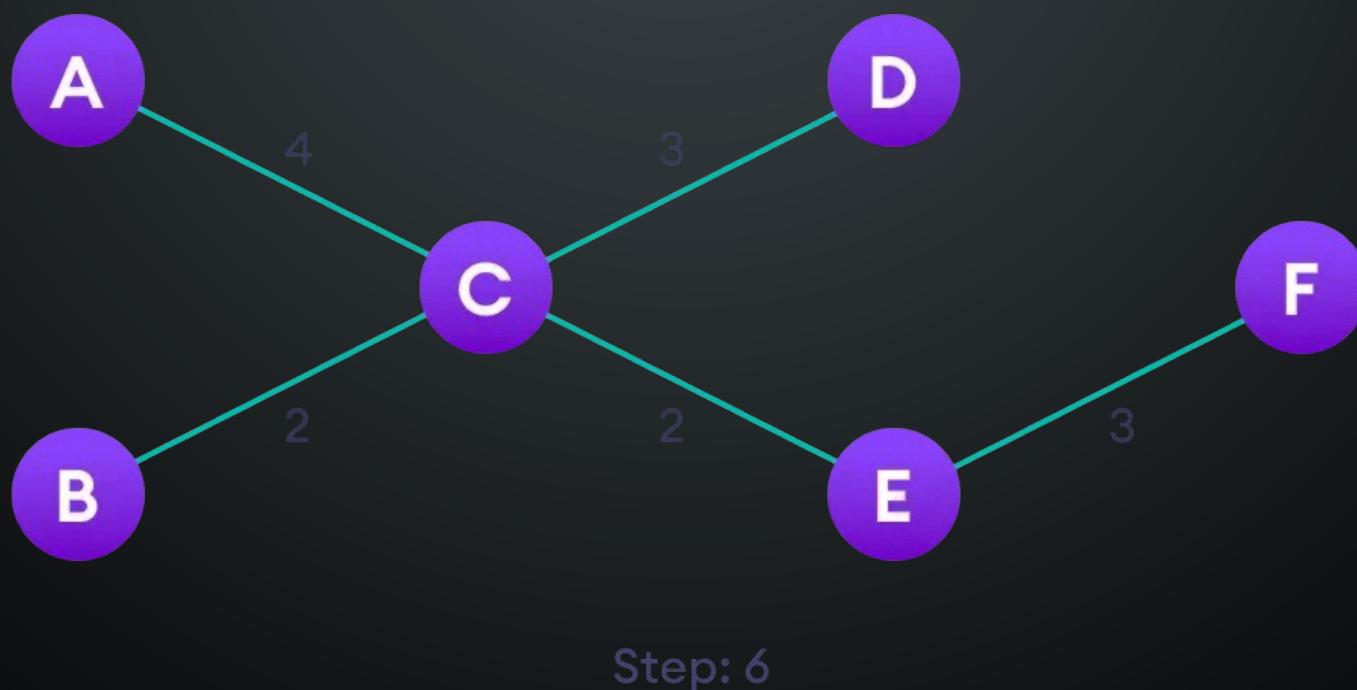


EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM



EXAMPLE OF PRIM'S ALGORITHM



PRIM'S ALGORITHM PSEUDOCODE

$T = \emptyset;$

$U = \{ 1 \};$

while ($U \neq V$)

 let (u, v) be the lowest cost edge such that $u \in U$ and $v \in V - U$;

$T = T \cup \{(u, v)\}$

$U = U \cup \{v\}$

The time complexity of Prim's algorithm is $O(E \log V)$.

KRUSKAL'S ALGORITHM

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which:

- form a tree that includes every vertex
- has the minimum sum of weights among all the trees that can be formed from the graph

HOW KRUSKAL'S ALGORITHM WORKS

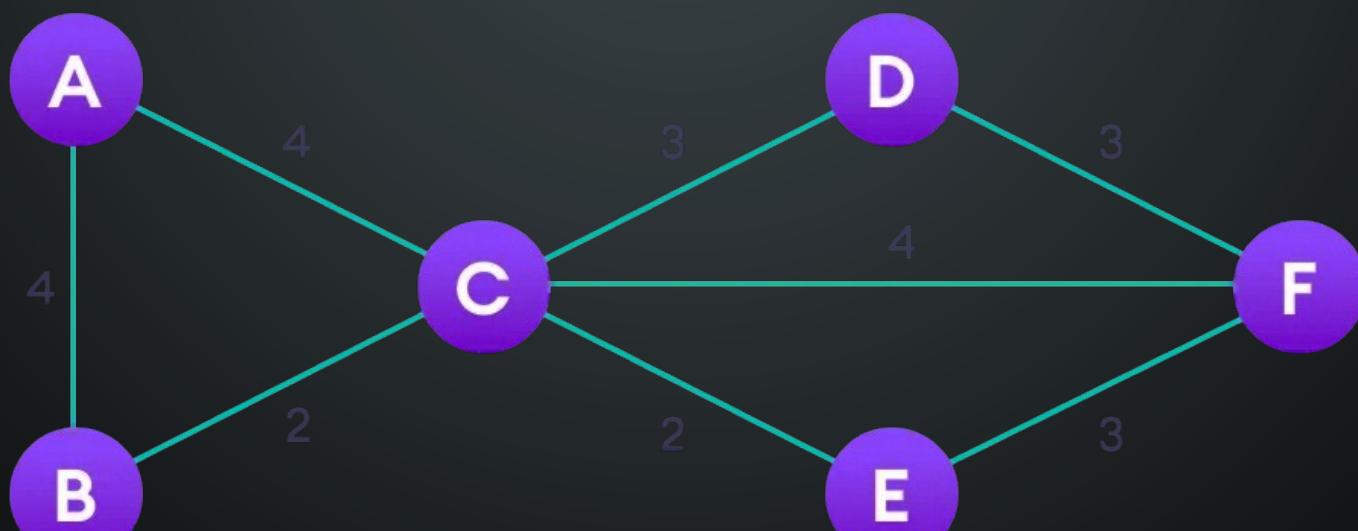
It falls under a class of algorithms called greedy algorithms that find the local optimum in the hopes of finding a global optimum.

We start from the edges with the lowest weight and keep adding edges until we reach our goal.

The steps for implementing Kruskal's algorithm are as follows:

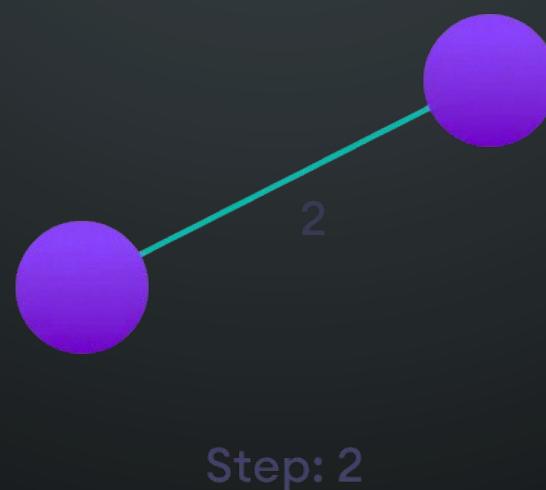
1. Sort all the edges from low weight to high.
2. Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
3. Keep adding edges until we reach all vertices.

EXAMPLE OF KRUSKAL'S ALGORITHM



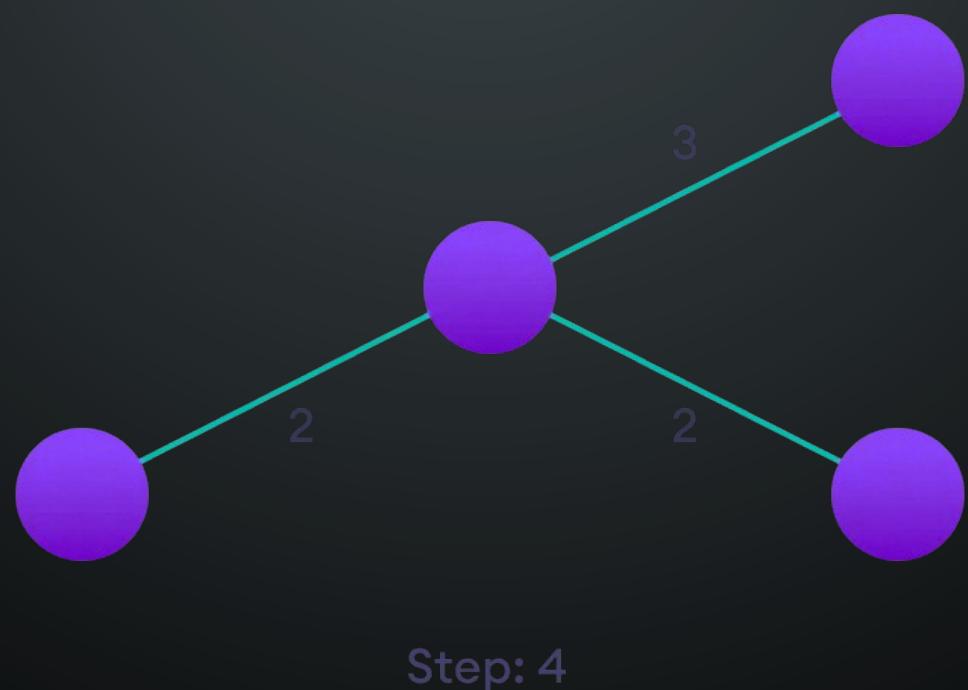
Step: 1

EXAMPLE OF KRUSKAL'S ALGORITHM

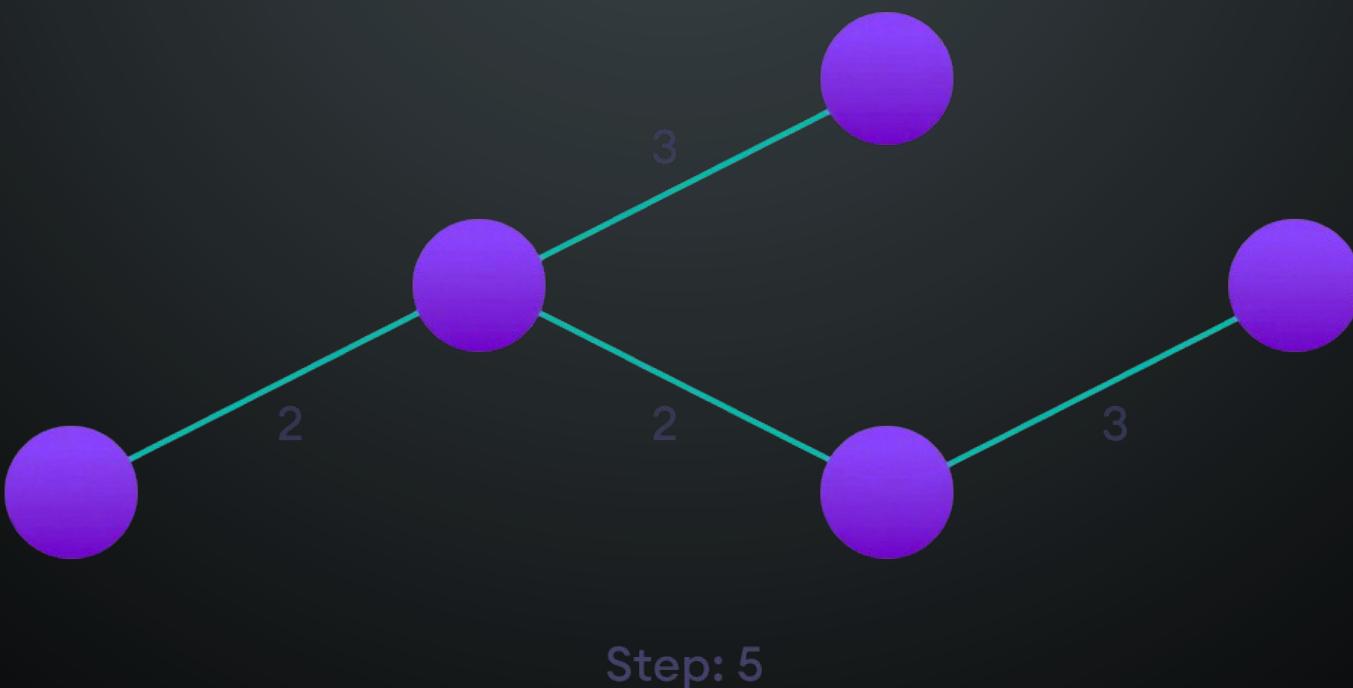


EXAMPLE OF KRUSKAL'S ALGORITHM

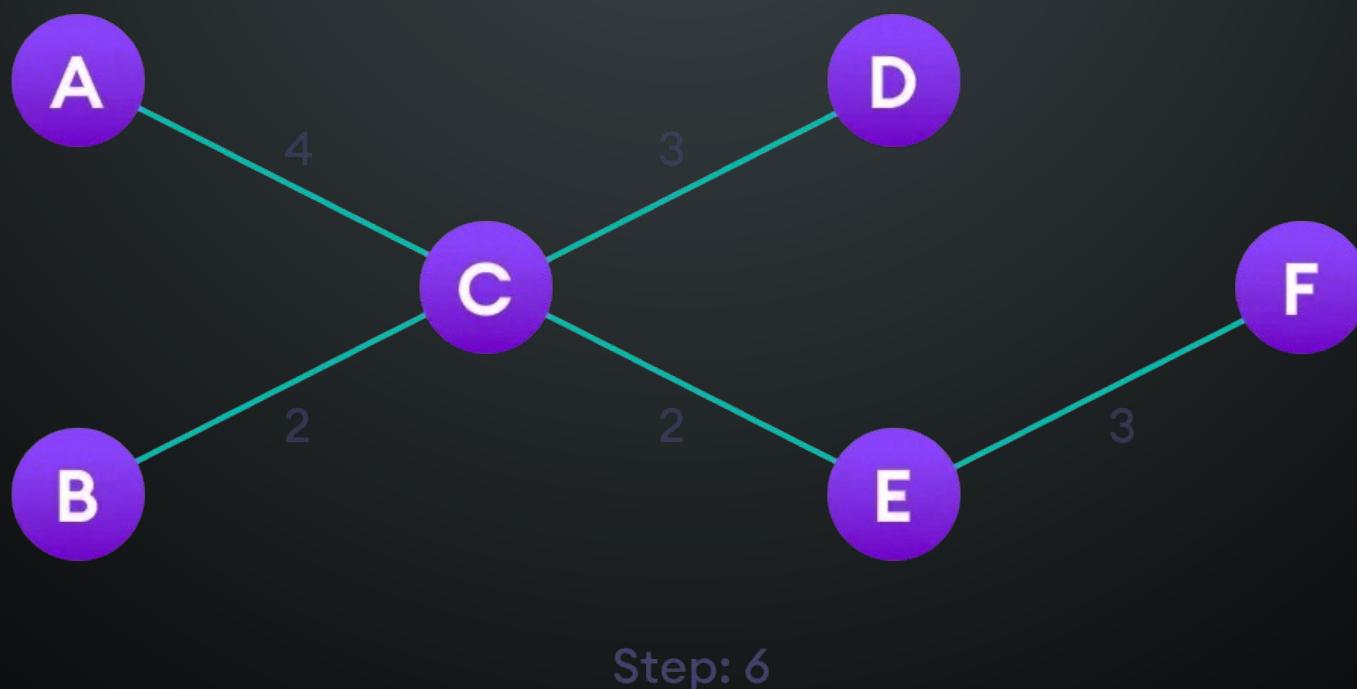
EXAMPLE OF KRUSKAL'S ALGORITHM



EXAMPLE OF KRUSKAL'S ALGORITHM



EXAMPLE OF KRUSKAL'S ALGORITHM



KRUSKAL'S ALGORITHM COMPLEXITY

Any minimum spanning tree algorithm revolves around checking if adding an edge creates a loop or not.

The most common way to find this out is an algorithm called Union Find. The Union-Find algorithm divides the vertices into clusters and allows us to check if two vertices belong to the same cluster or not and hence decide whether adding an edge creates a cycle.

The time complexity of Kruskal's Algorithm is: $O(E \log E)$.

PRACTICE: ISLANDS CONNECTION PROBLEM

Problem. You have **N** islands ($1 \leq N \leq 100$) that you need to connect with tunnels. In addition, you need to keep environmental pollution as low as possible. The pollution is calculated by formula: $P=L^2E$, where **L** – tunnel length, **E** – pollution coefficient.

Task. Create a program using C/C++/Python to solve this problem.

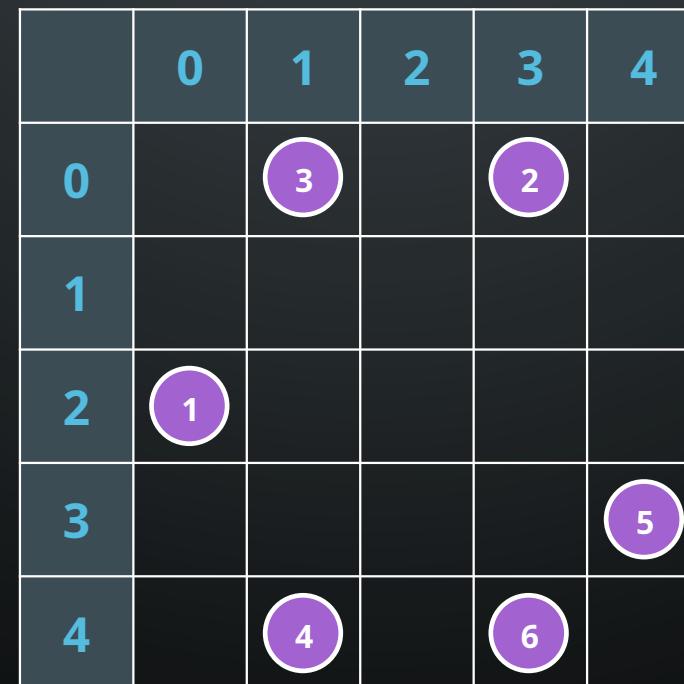
Input. Four strings: the first one with single number **N**; the second one with **N** numbers – the **X** coordinates ($0 \leq X \leq 10^6$) of the islands divided by spaces; the third one with **N** numbers – the **Y** coordinates ($0 \leq Y \leq 10^6$) of the islands divided by spaces; the last one with single number **E** ($0 \leq E \leq 1$) – pollution coefficient.

Output. The accumulated environmental pollution is rounded to the closest integer.

PRACTICE: ISLANDS CONNECTION PROBLEM

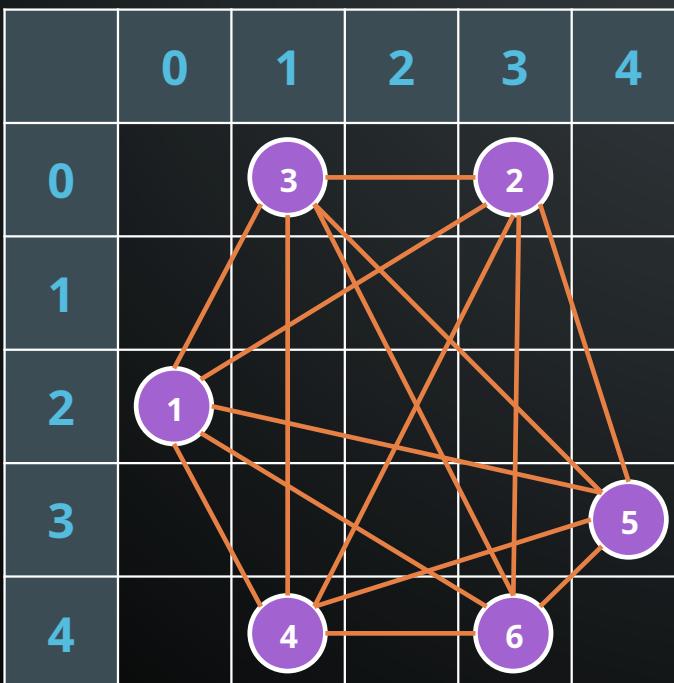
Example. There are $N=6$ islands and pollution coefficient $E=0.005$

6
0 3 1 1 4 3
2 0 0 4 3 4
0.005



PRACTICE: ISLANDS CONNECTION PROBLEM

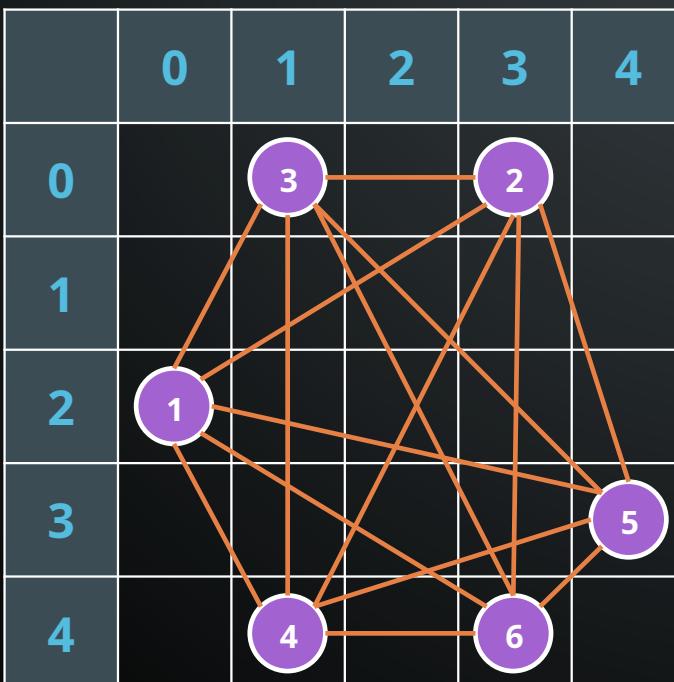
Step 1. Calculate squares length for all edges.



N	EDG E	LENGTH
1	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
2	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
3	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
4	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
5	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
6	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
7	2 - 4	$(3-1)^2 + (4-0)^2 = 20$
8	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
9	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
10	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
11	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
12	3 - 6	$(3-1)^2 + (4-0)^2 = 20$
13	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
14	4 - 6	$(3-1)^2 + (4-4)^2 = 4$

PRACTICE: ISLANDS CONNECTION PROBLEM

Step 2. Sort lengths in ascending order.



N	EDGE	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

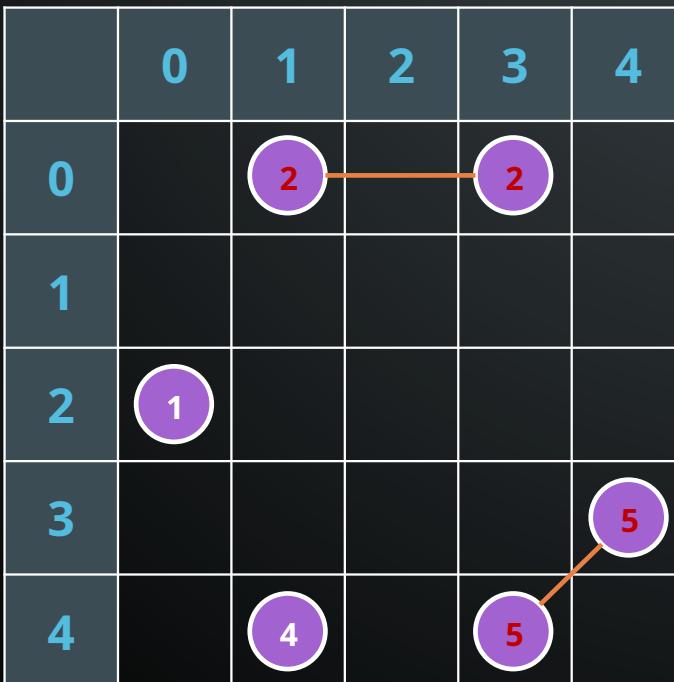
Step 3. Select the first edge from the list and add it to MST.

	0	1	2	3	4
0		3		2	
1					
2		1			
3					5
4		4		5	

N	EDG E	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

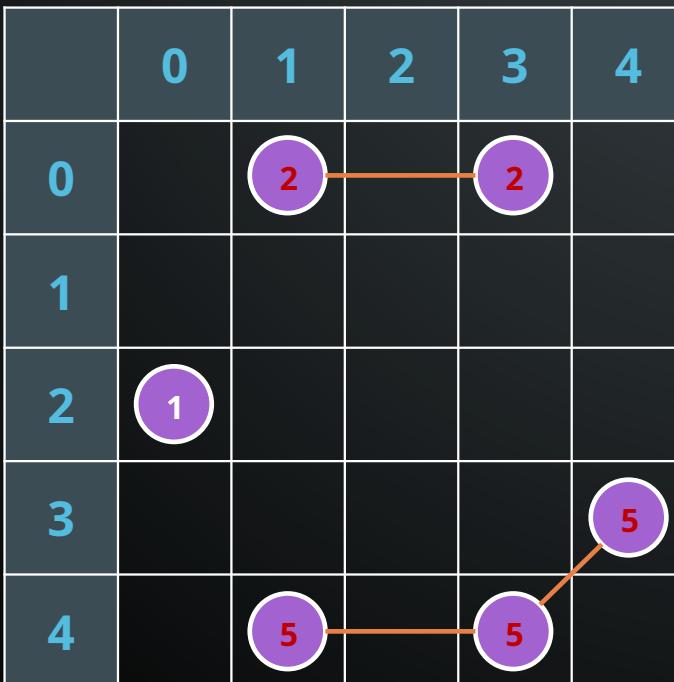
Step 4. Select the next edge from the list and add it to MST.



N	EDG E	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

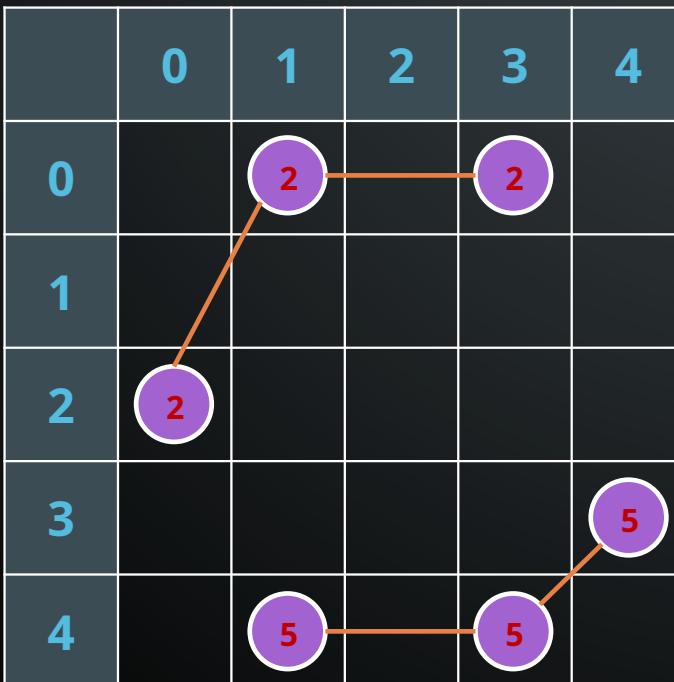
Step 5. Select the next edge from the list and add it to MST.



N	EDG E	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

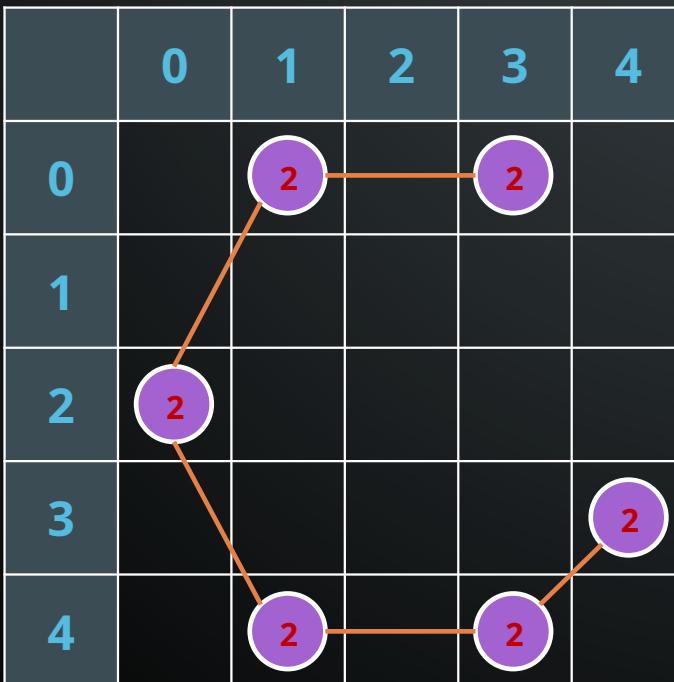
Step 6. Select the next edge from the list and add it to MST.



N	EDG E	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

Step 7. Select the next edge from the list and add it to MST.



N	EDG E	LENGTH
1	5 - 6	$(4-3)^2 + (4-3)^2 = 2$
2	2 - 3	$(3-1)^2 + (0-0)^2 = 4$
3	4 - 6	$(3-1)^2 + (4-4)^2 = 4$
4	1 - 3	$(1-0)^2 + (2-0)^2 = 5$
5	1 - 4	$(1-0)^2 + (4-2)^2 = 5$
6	2 - 5	$(4-3)^2 + (3-0)^2 = 10$
7	4 - 5	$(4-1)^2 + (4-3)^2 = 10$
8	1 - 2	$(3-0)^2 + (2-0)^2 = 13$
9	1 - 6	$(3-0)^2 + (4-2)^2 = 13$
10	3 - 5	$(4-1)^2 + (3-1)^2 = 13$
11	2 - 6	$(0-0)^2 + (4-0)^2 = 16$
12	3 - 4	$(1-1)^2 + (4-0)^2 = 16$
13	1 - 5	$(4-0)^2 + (3-2)^2 = 17$
14	2 - 4	$(3-1)^2 + (4-0)^2 = 20$

PRACTICE: ISLANDS CONNECTION PROBLEM

Code example:

```
#include <iostream>
#define MAX 1000

int N, A, X[MAX], Y[MAX];
double E;

int main()
{
    cin >> N;
    for(int i = 0; i < N; i++) cin >> X[i];
    for(int i = 0; i < N; i++) cin >> Y[i];
    cin >> E;
    /*your code here*/
    cout << A;

    return 0;
}
```

THANK
YOU!