
GRAPH MINIMUM
SPANNING TREE
• SPANNING TREE
• EXAMPLE OF A SPANNING TREE
• MINIMUM SPANNING TREE
• PRIM’S ALGORITHM
• KRUSKAL’S ALGORITHM
• PRACTICE: ISLANDS CONNECTION PROBLEM

Author: prof. Yevhenii Borodavka

SPANNING TREE
A spanning tree is a sub-graph of an undirected connected
graph, which includes all the vertices of the graph with a
minimum possible number of edges. If a vertex is missed,
then it is not a spanning tree.
The edges may or may not have weights assigned to them.
The total number of spanning trees with n vertices that can be
created from a complete graph is equal to n(n-2).
If we have n=4, the maximum number of possible spanning
trees is equal to 44-2=16. Thus, 16 spanning trees can be
formed from a complete graph with 4 vertices.

EXAMPLE OF A SPANNING TREE
Let's understand the spanning tree with examples below.
Let the original graph be:

Some of the possible spanning trees that
can be created from the above graph are:

MINIMUM SPANNING TREE
A minimum spanning tree is a spanning tree in which the sum
of the weight of the edges is as minimum as possible.
The initial graph is:

The possible spanning trees from the above
graph are:

MINIMUM SPANNING TREE
The minimum spanning tree from the above spanning trees
is:

PRIM’S ALGORITHM
Prim's algorithm is a minimum spanning tree algorithm that
takes a graph as input and finds the subset of the edges of
that graph which:
• form a tree that includes every vertex
• has the minimum sum of weights among all the trees that

can be formed from the graph

HOW PRIM'S ALGORITHM WORKS
It falls under a class of algorithms called greedy algorithms
that find the local optimum in the hopes of finding a global
optimum.
We start from one vertex and keep adding edges with the
lowest weight until we reach our goal.
The steps for implementing Prim's algorithm are as follows:
1. Initialize the minimum spanning tree with a vertex chosen

at random.
2. Find all the edges that connect the tree to new vertices,

find the minimum and add it to the tree.
3. Keep repeating step 2 until we get a minimum spanning

tree.

EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM

EXAMPLE OF PRIM'S ALGORITHM

PRIM'S ALGORITHM PSEUDOCODE
T = ;∅
U = { 1 };
while (U ≠ V)
 let (u, v) be the lowest cost edge such that u U and v V - ∈ ∈
U;
 T = T {(u, v)}∪
 U = U {v}∪

The time complexity of Prim's algorithm is O(E log V).

KRUSKAL'S ALGORITHM
Kruskal's algorithm is a minimum spanning tree algorithm
that takes a graph as input and finds the subset of the edges
of that graph which:
• form a tree that includes every vertex
• has the minimum sum of weights among all the trees that

can be formed from the graph

HOW KRUSKAL'S ALGORITHM WORKS
It falls under a class of algorithms called greedy algorithms
that find the local optimum in the hopes of finding a global
optimum.
We start from the edges with the lowest weight and keep
adding edges until we reach our goal.
The steps for implementing Kruskal's algorithm are as follows:
1. Sort all the edges from low weight to high.
2. Take the edge with the lowest weight and add it to the

spanning tree. If adding the edge created a cycle, then
reject this edge.

3. Keep adding edges until we reach all vertices.

EXAMPLE OF KRUSKAL'S ALGORITHM

EXAMPLE OF KRUSKAL'S ALGORITHM

EXAMPLE OF KRUSKAL'S ALGORITHM

EXAMPLE OF KRUSKAL'S ALGORITHM

EXAMPLE OF KRUSKAL'S ALGORITHM

EXAMPLE OF KRUSKAL'S ALGORITHM

KRUSKAL'S ALGORITHM COMPLEXITY
Any minimum spanning tree algorithm revolves around
checking if adding an edge creates a loop or not.
The most common way to find this out is an algorithm called
Union Find. The Union-Find algorithm divides the vertices into
clusters and allows us to check if two vertices belong to the
same cluster or not and hence decide whether adding an
edge creates a cycle.
The time complexity of Kruskal's Algorithm is: O(E log E).

PRACTICE: ISLANDS CONNECTION PROBLEM
Problem. You have N islands (1<=N<=100) that you need to connect with
tunnels. In addition, you need to keep environmental pollution as low as
possible. The pollution is calculated by formula: P=L2E, where L – tunnel
length, E – pollution coefficient.
Task. Create a program using C/C++/Python to solve this problem.
Input. Four strings: the first one with single number N; the second one
with N numbers – the X coordinates (0<=X<=106) of the islands divided
by spaces; the third one with N numbers – the Y coordinates (0<=Y<=106)
of the islands divided by spaces; the last one with single number E
(0<=E<=1) – pollution coefficient.
Output. The accumulated environmental pollution is rounded to the
closest integer.

PRACTICE: ISLANDS CONNECTION PROBLEM
Example. There are N=6 islands and pollution coefficient
E=0.005
6
0 3 1 1 4 3
2 0 0 4 3 4
0.005

0 1 2 3 4

0

1

2

3

4

3 2

1

4 6

5

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 1. Calculate squares length for all edges.

0 1 2 3 4

0

1

2

3

4

3 2

1

4 6

5

N EDG
E LENGTH

1 1 - 2 (3-0)2 + (2-0)2 = 13

2 1 - 3 (1-0)2 + (2-0)2 = 5

3 1 - 4 (1-0)2 + (4-2)2 = 5

4 1 - 5 (4-0)2 + (3-2)2 = 17

5 1 - 6 (3-0)2 + (4-2)2 = 13

6 2 - 3 (3-1)2 + (0-0)2 = 4

7 2 - 4 (3-1)2 + (4-0)2 = 20

8 2 - 5 (4-3)2 + (3-0)2 = 10

9 2 - 6 (0-0)2 + (4-0)2 = 16

10 3 - 4 (1-1)2 + (4-0)2 = 16

11 3 - 5 (4-1)2 + (3-1)2 = 13

12 3 - 6 (3-1)2 + (4-0)2 = 20

13 4 - 5 (4-1)2 + (4-3)2 = 10

14 4 - 6 (3-1)2 + (4-4)2 = 4

15 5 - 6 (4-3)2 + (4-3)2 = 2

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 2. Sort lengths in ascending order.

0 1 2 3 4

0

1

2

3

4

3 2

1

4 6

5

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 3. Select the first edge from the list and add it to MST.

0 1 2 3 4

0

1

2

3

4

3 2

1

4 5

5

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 4. Select the next edge from the list and add it to MST.

0 1 2 3 4

0

1

2

3

4

2 2

1

4 5

5

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 5. Select the next edge from the list and add it to MST.

0 1 2 3 4

0

1

2

3

4

2 2

1

5 5

5

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 6. Select the next edge from the list and add it to MST.

0 1 2 3 4

0

1

2

3

4

2 2

2

5 5

5

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Step 7. Select the next edge from the list and add it to MST.

0 1 2 3 4

0

1

2

3

4

2 2

2

2 2

2

N EDG
E LENGTH

1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20

PRACTICE: ISLANDS CONNECTION PROBLEM
Code example:
#include <iostream>
#define MAX 1000

int N, A, X[MAX], Y[MAX];
double E;

int main()
{
 cin >> N;
 for(int i = 0; i < N; i++) cin >> X[i];
 for(int i = 0; i < N; i++) cin >> Y[i];
 cin >> E;
 /*your code here*/
 cout << A;

 return 0;
}

THANK
YOU!

	Graph minimum spanning tree
	spanning tree
	Example of a Spanning Tree
	minimum spanning tree
	minimum spanning tree (2)
	Prim’s algorithm
	How Prim's algorithm works
	Example of Prim's algorithm
	Example of Prim's algorithm (2)
	Example of Prim's algorithm (3)
	Example of Prim's algorithm (4)
	Example of Prim's algorithm (5)
	Example of Prim's algorithm (6)
	Prim's Algorithm pseudocode
	Kruskal's Algorithm
	How Kruskal's algorithm works
	Example of Kruskal's algorithm
	Example of Kruskal's algorithm (2)
	Example of Kruskal's algorithm (3)
	Example of Kruskal's algorithm (4)
	Example of Kruskal's algorithm (5)
	Example of Kruskal's algorithm (6)
	Kruskal's Algorithm complexity
	Practice: Islands connection problem
	Practice: Islands connection problem (2)
	Practice: Islands connection problem (3)
	Practice: Islands connection problem (4)
	Practice: Islands connection problem (5)
	Practice: Islands connection problem (6)
	Practice: Islands connection problem (7)
	Practice: Islands connection problem (8)
	Practice: Islands connection problem (9)
	Practice: Islands connection problem (10)
	Thank you!

