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SPANNING TREE
A spanning tree is a sub-graph of an undirected connected 
graph, which includes all the vertices of the graph with a 
minimum possible number of edges. If a vertex is missed, 
then it is not a spanning tree.
The edges may or may not have weights assigned to them.
The total number of spanning trees with n vertices that can be 
created from a complete graph is equal to n(n-2).
If we have n=4, the maximum number of possible spanning 
trees is equal to 44-2=16. Thus, 16 spanning trees can be 
formed from a complete graph with 4 vertices.



EXAMPLE OF A SPANNING TREE
Let's understand the spanning tree with examples below.
Let the original graph be:

Some of the possible spanning trees that 
can be created from the above graph are:



MINIMUM SPANNING TREE
A minimum spanning tree is a spanning tree in which the sum 
of the weight of the edges is as minimum as possible.
The initial graph is:

The possible spanning trees from the above 
graph are:



MINIMUM SPANNING TREE
The minimum spanning tree from the above spanning trees 
is:



PRIM’S ALGORITHM
Prim's algorithm is a minimum spanning tree algorithm that 
takes a graph as input and finds the subset of the edges of 
that graph which:
• form a tree that includes every vertex
• has the minimum sum of weights among all the trees that 

can be formed from the graph



HOW PRIM'S ALGORITHM WORKS
It falls under a class of algorithms called greedy algorithms 
that find the local optimum in the hopes of finding a global 
optimum.
We start from one vertex and keep adding edges with the 
lowest weight until we reach our goal.
The steps for implementing Prim's algorithm are as follows:
1. Initialize the minimum spanning tree with a vertex chosen 

at random.
2. Find all the edges that connect the tree to new vertices, 

find the minimum and add it to the tree.
3. Keep repeating step 2 until we get a minimum spanning 

tree.



EXAMPLE OF PRIM'S ALGORITHM
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EXAMPLE OF PRIM'S ALGORITHM



PRIM'S ALGORITHM PSEUDOCODE
T = ;∅
U = { 1 };
while (U ≠ V)
    let (u, v) be the lowest cost edge such that u  U and v  V - ∈ ∈
U;
    T = T  {(u, v)}∪
    U = U  {v}∪

The time complexity of Prim's algorithm is O(E log V).



KRUSKAL'S ALGORITHM
Kruskal's algorithm is a minimum spanning tree algorithm 
that takes a graph as input and finds the subset of the edges 
of that graph which:
• form a tree that includes every vertex
• has the minimum sum of weights among all the trees that 

can be formed from the graph



HOW KRUSKAL'S ALGORITHM WORKS
It falls under a class of algorithms called greedy algorithms 
that find the local optimum in the hopes of finding a global 
optimum.
We start from the edges with the lowest weight and keep 
adding edges until we reach our goal.
The steps for implementing Kruskal's algorithm are as follows:
1. Sort all the edges from low weight to high.
2. Take the edge with the lowest weight and add it to the 

spanning tree. If adding the edge created a cycle, then 
reject this edge.

3. Keep adding edges until we reach all vertices.



EXAMPLE OF KRUSKAL'S ALGORITHM
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EXAMPLE OF KRUSKAL'S ALGORITHM



KRUSKAL'S ALGORITHM COMPLEXITY
Any minimum spanning tree algorithm revolves around 
checking if adding an edge creates a loop or not.
The most common way to find this out is an algorithm called 
Union Find. The Union-Find algorithm divides the vertices into 
clusters and allows us to check if two vertices belong to the 
same cluster or not and hence decide whether adding an 
edge creates a cycle.
The time complexity of Kruskal's Algorithm is: O(E log E).



PRACTICE: ISLANDS CONNECTION PROBLEM
Problem. You have N islands (1<=N<=100) that you need to connect with 
tunnels. In addition, you need to keep environmental pollution as low as 
possible. The pollution is calculated by formula: P=L2E, where L – tunnel 
length, E – pollution coefficient.  
Task. Create a program using C/C++/Python to solve this problem.
Input. Four strings: the first one with single number N; the second one 
with N numbers  – the X coordinates (0<=X<=106) of the islands divided 
by spaces; the third one with N numbers – the Y coordinates (0<=Y<=106) 
of the islands divided by spaces; the last one with single number E 
(0<=E<=1) – pollution coefficient.
Output. The accumulated environmental pollution is rounded to the 
closest integer.



PRACTICE: ISLANDS CONNECTION PROBLEM
Example. There are N=6 islands and pollution coefficient 
E=0.005
6
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PRACTICE: ISLANDS CONNECTION PROBLEM
Step 1. Calculate squares length for all edges.
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N EDG
E LENGTH

1 1 - 2 (3-0)2 + (2-0)2 = 13

2 1 - 3 (1-0)2 + (2-0)2 = 5

3 1 - 4 (1-0)2 + (4-2)2 = 5

4 1 - 5 (4-0)2 + (3-2)2 = 17

5 1 - 6 (3-0)2 + (4-2)2 = 13

6 2 - 3 (3-1)2 + (0-0)2 = 4

7 2 - 4 (3-1)2 + (4-0)2 = 20

8 2 - 5 (4-3)2 + (3-0)2 = 10

9 2 - 6 (0-0)2 + (4-0)2 = 16

10 3 - 4 (1-1)2 + (4-0)2 = 16

11 3 - 5 (4-1)2 + (3-1)2 = 13

12 3 - 6 (3-1)2 + (4-0)2 = 20

13 4 - 5 (4-1)2 + (4-3)2 = 10

14 4 - 6 (3-1)2 + (4-4)2 = 4

15 5 - 6 (4-3)2 + (4-3)2 = 2



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 2. Sort lengths in ascending order.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 3. Select the first edge from the list and add it to MST.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 4. Select the next edge from the list and add it to MST.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 5. Select the next edge from the list and add it to MST.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 6. Select the next edge from the list and add it to MST.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Step 7. Select the next edge from the list and add it to MST.
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1 5 - 6 (4-3)2 + (4-3)2 = 2

2 2 - 3 (3-1)2 + (0-0)2 = 4

3 4 - 6 (3-1)2 + (4-4)2 = 4

4 1 - 3 (1-0)2 + (2-0)2 = 5

5 1 - 4 (1-0)2 + (4-2)2 = 5

6 2 - 5 (4-3)2 + (3-0)2 = 10

7 4 - 5 (4-1)2 + (4-3)2 = 10

8 1 - 2 (3-0)2 + (2-0)2 = 13

9 1 - 6 (3-0)2 + (4-2)2 = 13

10 3 - 5 (4-1)2 + (3-1)2 = 13

11 2 - 6 (0-0)2 + (4-0)2 = 16

12 3 - 4 (1-1)2 + (4-0)2 = 16

13 1 - 5 (4-0)2 + (3-2)2 = 17

14 2 - 4 (3-1)2 + (4-0)2 = 20

15 3 - 6 (3-1)2 + (4-0)2 = 20



PRACTICE: ISLANDS CONNECTION PROBLEM
Code example:
#include <iostream>
#define MAX 1000

int N, A, X[MAX], Y[MAX];
double E;

int main()
{
    cin >> N;
    for(int i = 0; i < N; i++) cin >> X[i];  
    for(int i = 0; i < N; i++) cin >> Y[i];  
    cin >> E;
    /*your code here*/
    cout << A;

    return 0;
}



THANK 
YOU!
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