Jlle s ADJACENCY LIST FOR
~Il)\>  GRAPH REPRESENTATION

O e UNDIRECTED GRAPH REPRESENTATION
e DIRECTED GRAPH REPRESENTATION
e WEIGHTED GRAPH REPRESENTATION
Qo | e ADVANTAGES OF THE ADJACENCY LIST
e DISADVANTAGES OF THE ADJACENCY LIST
O O e THE ADJACENCY LIST STRUCTURE
\ : //\ e PRACTICE: TASK SEQUENCE PROBLEM

,\ ‘/ Author: prof. Yevhenii Borodavka



> UNDIRECTED GRAPH REPRESENTATION

\ O 7\
.~ An adjacency list represents a graph as an array of linked lists.
S The index of the array represents a vertex and each element

in its linked list represents the other vertices that form an
edge with the vertex.

\ For example, we have a graph below.
O 0 K
0 N
~ 2 ~
/p / A
= 1



> UNDIRECTED GRAPH REPRESENTATION

.~ We can represent this graph in the form of a linked list on a
&S computer as shown below.

Here, 0, 1, 2, 3 are the
E_"_ vertices and each of them

forms a linked list with all of
its adjacent vertices. For _
instance, vertex 1 has two
adjacent vertices 0 and 2. 7
Therefore, 1 is linked with 0

and 2 in the figure above. 0




> DIRECTED GRAPH REPRESENTATION

N 2~

|~ For directed graphs, the adjacency list is shorter, because only
. one direction is used.

~ f—F
| l'\

.
&
/,\
(/5

7N\



> WEIGHTED GRAPH REPRESENTATION

AN

/.. A weighted graph can be represented using the weight of the “
o edge as additional information to the node structure.

s - - K EER EES- Kl
- N

e R EER- KN
VA : B o : H
/.
% K XN




> ADVANTAGES OF THE ADJACENCY LIST

N ~

.~ *Alist of adjacencies saves a lot of space.

O * We can easily insert and delete items because we are using a
linked list.

* Such a representation is simple to understand and clearly
shows the adjacent nodes.

) * An adjacency list is efficient in terms of storage because we
‘ _only need to store the values for the edges. For a sparse _
/~ graph with millions of vertices and edges, this can mean a J

/  lot of saved space. -

| It also helps to find all the vertices adjacent to a vertex
N1

N\

Pam

Pam



N

P

> \

> DISADVANTAGES OF THE ADJACENCY LIST

~ *®Finding the adjacent list is not quicker than the adjacency

matrix because all the connected nodes must be first
explored to find them.

* While the adjacency list allows you to test whether two
vertices are adjacent, it is slower to perform this operation.

{

7\



\\
N\ 7~

‘A

7N\

AN

”|‘,\
/,\
/7

THE ADJACENCY LIST STRUCTURE

The simplest adjacency list needs a node data structure to

store a vertex and a graph data structure to organize the
nodes.

We stay close to the basic definition of a graph - a collection
of vertices and edges {V, E}. For simplicity, we use an
unlabeled graph as opposed to a labeled one i.e. the vertices
are identified by their indices 0,1,2,3.

Let's dig into the data structures at play here.



L\\
° THE ADJACENCY LIST STRUCTURE

j\m struct node{

O vertex;

struct node* next;
N }i
O struct Graph{
numVertices:

C? struct node** adjlLists;




N

\\

’A

7N\

> THE ADJACENCY LIST STRUCTURE

Don't let the struct node** adjLists overwhelm you.

All we are saying is we want to store a pointer to struct node®.
This is because we don't know how many vertices the graph

will have and so we cannot create an array of Linked Lists at
compile time.

For the weighted graph, the node structure needs to contain
the weight of the edge as well.

struct node{ /J
vertex; e
welight; /

struct node* next; }; ®



A\ /

> PRACTICE: TASK SEQUENCE PROBLEM

Problem. You have N tasks (1<=N<=10°) you need to do. You also have a
K pair of the tasks (1<=K<=10°) which describes the task dependency -
the second task must be done after the first one. You need to sort the
tasks in the correct order for execution.

Example. You have N=9 tasks and K=9 pairs: (4,1) (1,2) (2,3) (2,7) (5,6)
) (7,6) (1,5 (8,5 (8,9). Correct orders are 8,94,1,52,3,7,6 or
® 4,1,2,3,8,5,7,6,9 or 4,8,9,1,2,3,5,7,6. But this order s
. incorrect because the task 5 can’t be done before the task 8.

N

N\

~

© Task. Create a program using C/C++/Python to solve this problem.

//A Input. Two strings: the first one with two numbers N and K divided by )A
O space and the second one with K pairs of the tasks indexes divided by | /

spaces.
/ ~
Output. The correct order of the task execution (tasks indexes divided by '

\



\ A\ %
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O A

/.~ Graph from example and its adjacency list. Each node

A contains a vertex index, visited value, and reference on the
previous node. [1]—{4
[2]—{1
N 32
4]
O B—{1}—s
> [6l—{5—{7
I 2 I
/ 3 ﬁ
| /T h o /
/ The Ais output result. |A O




0N
> PRACTICE: TASK SEQUENCE PROBLEM

\,\ ~ Traverse the adjacency list N times. Step 1.

'S

;

s,

>
I

‘/ﬁ The A is output result.




([
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O : : :
..~ Traverse the adjacency list N times. Step 2.

)

/" The Ais output result. |[A]4]s




N
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O : : :
..~ Traverse the adjacency list N times. Step 3.

)

> ITIIIT

SN

o N u1 = N
~E3

/" The A is output result.




N
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O : : :
..~ Traverse the adjacency list N times. Step 4.

')

/

/" The Ais output result. [A]4]8[1]2




\ A\ %
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O A

/.~ Traverse the adjacency list N times. Step 5.

')

) 7/

/" The Ais outputresult. |[A|a|8[1]2]3 -




\ A\ %
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O A

/.~ Traverse the adjacency list N times. Step 6.

')

) 7/

/" The Ais outputresult. |[A|a|8[1]2]3]s -




\ A\ %
> PRACTICE: TASK SEQUENCE PROBLEM

N\ O A

..~ Traverse the adjacency list N times. Step 7.

')

) 7/

/" The Ais output result. |[A]4]8[1]2]3]5]7 .




B
I > PRACTICE: TASK SEQUENCE PROBLEM

\ )
/.~ Traverse the adjacency list N times. Step 8.

'

'

/

/" The Alis outputresult. [A]4]8|1]2]3]5]|7]6




B
I > PRACTICE: TASK SEQUENCE PROBLEM

\ )
..~ Traverse the adjacency list N times. Step 9.

'

'

/

/"The Ais outputresult. |[A]4[8|1]2[3]5]7[6]0




\° PRACTICE: TASK SEQUENCE PROBLEM

1 : Code example:

e #include <iostream>
#define MAX 100001
typedef struct node t { index; visited; struct node t* previous; } node t;
N, K;
node t Graph[MAX];
add node ( curr, prev) { /*your code here*/ };

main()

cin >> N >> K;

) {

for( i=1; 1 <= N; i++) Graph[i].index = 1i;
f, s;
0 for( i=0; i<K; i++)
{

cin >> f >> s;

O
. , add node(s, f);

for( i=1; i <= N; i++)
'@ { /*your code here*/

}

O return 0;

A







	Adjacency list for graph representation
	Undirected Graph representation
	Undirected Graph representation (2)
	directed Graph representation
	Weighted Graph representation
	Advantages of the adjacency list
	Disadvantages of the adjacency list
	the adjacency list structure
	the adjacency list structure (2)
	the adjacency list structure (3)
	Practice: Task sequence problem
	Practice: Task sequence problem (2)
	Practice: Task sequence problem (3)
	Practice: Task sequence problem (4)
	Practice: Task sequence problem (5)
	Practice: Task sequence problem (6)
	Practice: Task sequence problem (7)
	Practice: Task sequence problem (8)
	Practice: Task sequence problem (9)
	Practice: Task sequence problem (10)
	Practice: Task sequence problem (11)
	Practice: Task sequence problem (12)
	Thank you!

