[
Jll\s HASHING

e WHY HASHING IS NEEDED?

* HASH
* HASH
* HASH

FUNCTION
TABLE
COLLISION

e GOOD HASH FUNCTIONS

e STRING HASH

e CALCULATION OF THE HASH OF A STRING
e FAST HASH CALCULATION OF SUBSTRINGS
e PRACTICE: STRING HASH COMPUTATION

Author: prof. Yevhenii Borodavka

\

N\

|\

>WHY HASHING IS NEEDED?

|~ After storing a large amount of data, we need to perform
various operations on these data. Lookups are inevitable for
the datasets. Linear search and binary search perform
lookups/search with time complexity of O(n) and O(log n)
respectively. As the size of the dataset increases, these
complexities also become significantly high which is not

o~

o~

~ Hashing is a technique of map

/.
/

o~

acceptable.

data to tabular indexes using a
for representing dictionaries for

ning a large set of arbitrary
nash function. It is a method

arge datasets.

It allows lookups, updating and retrieval operation to occur in

aconstanttimeie O(1)

o~

|\
N\ po

S

o~

HASH FUNCTION

A hash function is any function that can be used to map data of arbitrary
size to fixed-size values, though there are some hash functions that
support variable length output. The values returned by a hash function
are called hash values, hash codes, hash digests, digests, or simply
hashes. The values are usually used to index a fixed-size table called a
hash table. Use of a hash function to index a hash table is called hashing
or scatter storage addressing.

A hash function takes a key as an input, which is associated with a
datum or record and used to identify it to the data storage and retrieval
application. The keys may be fixed length, like an integer, or variable
length, like a name. In some cases, the key is the datum itself. The
output is a hash code used to index a hash table holding the data or
records, or pointers to them.

|\

AN

> HASH TABLE

.~ The Hash table data structure stores elements in key-value
o pairs where

* Key — unique integer that is used for indexing the values
* Value — data that are associated with keys.

1 In a hash table, a new index is processed using the keys. And,
i the element corresponding to that key is stored in the index.
| This process is called hashing.

//A Let k be a key and h(x) be a hash function. lA

' Here, h(k) will give us a new index to store the element linked
with k.

N
°HASH TABLE

'®)

\,\ ~ An example of the hash table

0O)

|\

> HASH COLLISION

.~ When the hash function generates the same index for
o multiple keys, there will be a conflict (what value to be stored
in that index). This is called a hash collision.

We can resolve the hash collision using one of the following

\ techniques.

\

* Collision resolution by chaining

[- * Open Addressing: Linear/Quadratic Probing and Double
/~ Hashing

/T Let's considering both methods more detail.

P~

/

L \\ J
© HASH COLLISION: RESOLUTION BY CHAINING

N\ O A

..~ In chaining, if a hash function produces the same index for
A multiple elements, these elements are stored in the same
index by using a doubly-linked list.

)

] %-
o N - 4
A - . h

A\ /

> HASH COLLISION: OPEN ADDRESSING

N\ O 1

..~ Unlike chaining, open addressing doesn't store multiple
S elements into the same slot. Here, each slot is either filled
with a single key or left NIL.

) Different techniques used in open addressing are:

N\

* Linear Probing

7N\

/,\ * Quadratic Probing ®
/" » Double hashin .
\ /,\ u ing //

| N\

/ ~

> HASH COLLISION: OPEN ADDRESSING

N\ N
.~ In linear probing, collision is resolved by checking the next
& slot.

h(k, 1) = (h’(k) + i) mod m
where i ={0, 1,} and h'(k) is a new hash function.

If a collision occurs at h(k, 0), then h(k, 1) is checked. In this
way, the value of i is incremented linearly.

‘ ~ The problem with linear probing is that a cluster of adjacent o
/ slots is filled. When inserting a new element, the entire cluster

/ must be traversed. This adds to the time required to perform | /
operatlons on the hash table.

ran

> HASH COLLISION: OPEN ADDRESSING

N\ O A
.~ Quadratic probing works similar to linear probing but the

S spacing between the slots is increased (greater than one) by
using the following relation.

h(k, i) = (h’(k) + ¢,*i + ¢,*i?) mod m

N
where,

I

" C, and ¢, are positive auxiliary constants,

//A: 1={0,1, ...} HAA

R
/ Y

|

R :
\ HASH COLLISION: OPEN ADDRESSING

\)
/. % Double hashing

O If a collision occurs after applying a hash function h(k), then
another hash function is calculated for finding the next slot.

h(k, i) = (h,(k) + i*h_(k)) mod m

A\ /

> GOOD HASH FUNCTIONS

AN 7~

.~ A good hash function may not prevent the collisions
A completely however it can reduce the number of collisions.

N\

Here, we will look into different methods to find a good hash
function:

) * Division Method
‘ ~ *Multiplication Method i
/A * Universal Hashing)
A /
|

/

N\

\

© GOOD HASH FUNCTIONS: DIVISION METHOD

AN 7~

.~ If kis a key and m is the size of the hash table, the hash
A function h() is calculated as:

h(k) =k mod m

For example, If the size of a hash table is 10 and k = 112 then
h(k) =112 mod 10 = 2. The value of m must not be the powers
of 2. This is because the powers of 2 in binary format are 10,
100, 1000, When we find k mod m, we will always get the
‘ /,\ lower order p bits.

N\

| /

7\

/

A\ /

| GOOD HASH FUNCTIONS: MULTIPLICATION
METHOD

AN P

L h(k) = m(k*A mod 1)]

7N\

where,
K*A mod 1 gives the fractional part k*A,
N | | gives the floor value

O A is any constant. The value of A lies between 0 and 1. But, an
~ optimal choice will be = (V5-1)/2 suggested by Knuth.

N\ N\

//,\ In Universal hashing, the hash function is chosen at random /“
| independent of keys.

/ ~
|

\

I\

> STRING HASH

|~ Hashing algorithms are helpful in solving a lot of problems.

We want to solve the problem of comparing strings efficiently.
The brute force way of doing so is just to compare the letters
of both strings, which has a time complexity of O(min(n,, n,))

) if n, and n, are the sizes of the two strings. We want to do

better. The idea behind the string hashing is the following: we
o map each string into an integer and compare those instead of
- the strings. Doing this allows us to reduce the execution time ¢

7 of the string comparison to O(1). 3
\ - /
. For the conversion, we need a hash function.

1)

o~

N\

STRING HASH

.~ The goal of it is to convert a string into an integer — the

of the string. The following condition has to hold: if two
strings s and t are equal (s=t), then also their hashes have to
be equal ((s)= (t)). Otherwise, we will not be able to
compare strings.

Notice, the opposite direction doesn't have to hold. If the
hashes are equal ((S)= (t)), then the strings do not
necessarily have to be equal. E.g. a valid hash function would
be simply (s)=0 for each s. Now, this is just a stupid
example, because this function will be completely useless, but
it is a valid hash function. The reason why the opposite
direction doesn't have to hold, is because there are

1)

> STRING HASH

.~ So usually we want the hash function to map strings onto

o numbers of a fixed range [0, m), then comparing strings is
just a comparison of two integers with a fixed length. And of
course, we want (s)+ (t) to be very likely if s=t.

\ That's the important part that you have to keep in mind.

A Using hashing will not be 100% deterministically correct,

~ because two complete different strings might have the same

'~ hash (the hashes collide). However, in a wide majority of tasks, -
//“ this can be safely ignored as the probability of the hashes of

\|/ /~ two different strings colliding is still very small. /
|

P

PN

/

o~

> CALCULATION OF THE HASH OF A STRING

AN 7~

|~ The good and widely used way to define the hash of a string s
S of length n is: hash(s) = s[0] + s[1]*p + s[2]*p2 + ... + s[n-1]*p""
mod m

where p and m are some chosen, positive numbers. It is called
a polynomial rolling hash function.

N\

It is reasonable to make p a prime number roughly equal to

the number of characters in the input alphabet. For example,

‘ if the input is composed of only lowercase letters of the
/ English alphabet, p=31 is a good choice. If the input may)

| © contain both uppercase and lowercase letters, then

1)—53 is a possible choice. ®

AN

P

N\

Pam

7N

> CALCULATION OF THE HASH OF A STRING

f \ Obviously m should be a large number since the probability of

two random strings colliding is about =1/m. Sometimes
m=2% is chosen, since then the integer overflows of 64-bit
integers work exactly like the modulo operation. However,
there exists a method, which generates colliding strings
(which work independently from the choice of p). So in
practice, m=2% is not recommended. A good choice for m is
some large prime number. The recommendation is to use
/A m=10°+9. This is a large number, but still small enough so that
/ we can perform multiplication of two values using 64-bit
| integers.

/

7N

\ /|

© FAST HASH CALCULATION OF SUBSTRINGS

\ O ~\
.~ Given a string s and indices i and j, find the hash of the

S substring sfi...j].

By definition, we have:

nhash(s[i...j)=s[i]*p°® + s[i+1]*p" + ... + s[j]*p" mod m.
Multiplying both by p' gives:

O hash(sli...j])*p'=hash(s[0...j])-hash(s[0...i-1]) mod m.

N\ N\

~ 5o by knowing the hash value of each prefix of the string s, we
// can compute the hash of any substring directly using this)A
\ ’l‘ formula. The only problem that we face in calculating it is that | /
we must be able to divide -

I 7 rFmoN em~y I g N o a =y |

AN

> FAST HASH CALCULATION OF SUBSTRINGS

/.~ However, there does exist an easier way. In most cases, rather

P

than calculating the hashes of substring exactly, it is enough
to compute the hash multiplied by some power of p. Suppose
we have two hashes of two substrings, one multiplied by p’
and the other by pi. If i<j then we multiply the first hash by p’,
otherwise, we multiply the second hash by p". By doing this,
we get both the hashes multiplied by the same power of

_ (which is the maximum of i1 and J) and now these hashes can
/-, be compared easily with no need for any division.

/

P

/

P

\>_>

{

> PRACTICE: STRING HASH COMPUTATION

N M\
.~ Problem. You have a string S of N symbols (1<=N<=1000) and

~ you need to compute the hash of this string using polynomial
rolling hash function: Hash = S[0]*P° + S[1]*P" + S[2]*P2 + ... +
S[N-11*PY" mod M. Use the values for P=1009 and for
X M=10%+7.

O Task. Create a program using C/C++/Python to solve this
- problem.

I

M

/,\ Input. A single string of N symbols. H

Output. The hash of input string.
| Example. Input string ‘Samsung’ has hash 628380962.

k /)
0 0O
\° PRACTICE: STRING HASH COMPUTATION /

O
1 . Code example: g
0 #include <iostream>
#define MAX 1000
#define P 1009
#define M 1000000007
S[MAX];
A;
W main()
O {
= cin >> S;
O // Your code here O

cout << A; A
@)
return 0Q;
®)
i [

	Hashing
	Why Hashing is Needed?
	Hash Function
	Hash Table
	Hash Table (2)
	Hash Collision
	Hash Collision: resolution by chaining
	Hash Collision: Open Addressing
	Hash Collision: Open Addressing (2)
	Hash Collision: Open Addressing (3)
	Hash Collision: Open Addressing (4)
	Good Hash Functions
	Good Hash Functions: Division Method
	Good Hash Functions: Multiplication Method
	String hash
	String hash (2)
	String hash (3)
	Calculation of the hash of a string
	Calculation of the hash of a string (2)
	Fast hash calculation of substrings
	Fast hash calculation of substrings (2)
	Practice: String hash computation
	Practice: String hash computation (2)
	Thank you!

