
BREADTH-FIRST SEARCH
• ALGORITHM DESCRIPTION
• ALGORITHM EXAMPLE
• ALGORITHM COMPLEXITY
• ALGORITHM APPLICATIONS
• PRACTICE: PATH WITH MINIMAL TRANSFERS

Author: prof. Yevhenii Borodavka

ALGORITHM DESCRIPTION
Traversal means visiting all the nodes of a graph. Breadth First
Traversal or Breadth First Search is a recursive algorithm for
searching all the vertices of a graph or tree data structure.
A standard BFS implementation puts each vertex of the graph
into one of two categories:
• Visited
•Not Visited
The purpose of the algorithm is to mark each vertex as visited
while avoiding cycles.

ALGORITHM DESCRIPTION
The algorithm works as follows:
1. Start by putting any one of the graph's vertices at the back

of a queue.
2. Take the front item of the queue and add it to the visited

list.
3. Create a list of that vertex's adjacent nodes. Add the ones

which aren't in the visited list to the back of the queue.
4. Keep repeating steps 2 and 3 until the queue is empty.
The graph might have two different disconnected parts so to
make sure that we cover every vertex, we can run the BFS
algorithm on every node.

ALGORITHM EXAMPLE
Let's see how the Breadth First Search algorithm works with
an example. We use an undirected graph with 5 vertices.

ALGORITHM EXAMPLE
We start from vertex 0, the BFS algorithm starts by putting it
in the Visited list and putting all its adjacent vertices in the
stack.

ALGORITHM EXAMPLE
Next, we visit the element at the front of queue i.e. 1 and go
to its adjacent nodes. Since 0 has already been visited, we visit
2 instead.

ALGORITHM EXAMPLE
Vertex 2 has an unvisited adjacent vertex in 4, so we add that
to the back of the queue and visit 3, which is at the front of
the queue.

ALGORITHM EXAMPLE
Only 4 remains in the queue since the only adjacent node of 3
i.e. 0 is already visited. We visit it.

ALGORITHM EXAMPLE
Since the queue is empty, we have completed the Breadth
First Traversal of the graph.

ALGORITHM COMPLEXITY
The time complexity of the BFS algorithm is represented in
the form of O(V + E), where V is the number of nodes and E is
the number of edges.
The space complexity of the algorithm is O(V).
The algorithm pseudocode:
create a queue Q

mark v as visited and put v into Q

while Q is non-empty

 remove the head u of Q

 mark and enqueue all (unvisited) neighbours of u

ALGORITHM APPLICATIONS
1. To build index by search index
2. For GPS navigation
3. Path finding algorithms
4. In Ford-Fulkerson algorithm to find maximum flow in a

network
5. Cycle detection in an undirected graph
6. In minimum spanning tree

PRACTICE: PATH WITH MINIMAL TRANSFERS
Problem. You have N cities (1<=N<=100) and K air races
(1<=K<=5000) between the cities. You need fly from the city A
to the city B with minimal number of transfers.
Task. Create a program using C/C++/Python to solve this
problem.
Input. Two strings: the fist one contains 4 numbers N, K, A,
and B divided by spaces; the second one contains K pairs of
numbers – indexes of connected cities divided by spaces.
Output. Transfers count for the shortest path or number -1 if
path doesn't exist.

PRACTICE: PATH WITH MINIMAL TRANSFERS
Example. We have N=8 and K=10, A=1 and B=6. Input:
8 11 1 6
1 3 1 2 4 3 2 3 4 5 6 5 7 5 8 5 2 7 7 8 8 6

1

2

3 4

5 6

7 8

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

1 Visited

1 Queue

Step 1. Push node 1 to queue and mark it as visited.

Minimal
transfers:
0

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 2. Pop node 1, push it neighbor to queue and mark them
as visited. 1 2 3 Visited

2 3 Queue
Minimal
transfers:
0

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 3. Pop node 2, push it neighbors to queue and mark
them as visited.1 2 3 7 Visited

3 7 Queue
Minimal
transfers:
1

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 4. Pop node 3, push it neighbors to queue and mark
them as visited.1 2 3 4 7 Visited

7 4 Queue
Minimal
transfers:
1

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 5. Pop node 7, push it neighbors to queue and mark
them as visited.1 2 3 4 5 7 8 Visited

4 5 8 Queue
Minimal
transfers:
2

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 6. Pop node 4. All it neighbor already visited so nothing
to push. 1 2 3 4 5 7 8 Visited

5 8 Queue
Minimal
transfers:
2

PRACTICE: PATH WITH MINIMAL TRANSFERS

1

2

3 4

5 6

7 8

Step 7. Pop node 5. The destination node 6 is neighbor of 5,
so se finish. 1 2 3 4 5 6 7 8 Visited

8 6 Queue
Minimal
transfers:
3

PRACTICE: PATH WITH MINIMAL TRANSFERS
Code example:
#include <iostream>
#define MAX 101
int N, K, A, B, R, D[MAX], V[MAX], M[MAX][MAX];
int main()
{
 cin >> N >> K >> A >> B;
 int f, s;
 for(int i = 0; i < K; i++)
 {
 cin >> f >> s;
 M[f][s] = 1;
 M[s][f] = 1;
 }
 // Your code here
 cout << R;
 return 0;
}

THANK
YOU!

	Breadth-first search
	Algorithm Description
	Algorithm Description (2)
	algorithm example
	algorithm example (2)
	algorithm example (3)
	algorithm example (4)
	algorithm example (5)
	algorithm example (6)
	Algorithm Complexity
	Algorithm Applications
	Practice: path with minimal transfers
	Practice: path with minimal transfers (2)
	Practice: path with minimal transfers (3)
	Practice: path with minimal transfers (4)
	Practice: path with minimal transfers (5)
	Practice: path with minimal transfers (6)
	Practice: path with minimal transfers (7)
	Practice: path with minimal transfers (8)
	Practice: path with minimal transfers (9)
	Practice: path with minimal transfers (10)
	Thank you!

