
MATRICES FOR GRAPH
REPRESENTATION
• GRAPH DATA STRUCTURE
• GRAPH TERMINOLOGY
• GRAPH APPLICATIONS
• GRAPH REPRESENTATION
• INCIDENCE MATRIX
• ADJACENCY MATRIX
• PRACTICE: TASK SEQUENCE PROBLEM

Author: prof. Yevhenii Borodavka

GRAPH DATA STRUCTURE
A graph data structure is a collection of nodes that have data
and are connected to other nodes.
Let's try to understand this through an example. On
Facebook, everything is a node. That includes User, Photo,
Album, Event, Group, Page, Comment, Story, Video, Link,
Note... anything that has data is a node.
Every relationship is an edge from one node to another.
Whether you post a photo, join a group, like a page, etc., a
new edge is created for that relationship.

GRAPH DATA STRUCTURE
All of Facebook is then a collection of these nodes and edges.
This is because Facebook uses a graph data structure to store
its data.

GRAPH DATA STRUCTURE
More precisely, a graph is a data structure (V, E) that consists
of
• A collection of vertices V
• A collection of edges E, represented as ordered pairs of

vertices (u, v) In the graph,
V = {0, 1, 2, 3}
E = {(0,1), (0,2), (0,3), (1,2)}
G = {V, E}

GRAPH TERMINOLOGY
Adjacency: A vertex is said to be adjacent to another vertex if
there is an edge connecting them. Vertices 2 and 3 are not
adjacent because there is no edge between them.
Path: A sequence of edges that allows you to go from vertex A
to vertex B is called a path. 0-1, 1-2 and 0-2 are paths from
vertex 0 to vertex 2.
Undirected Graph: A graph in which the direction of the edge
is not defined.
Directed Graph: A graph in which an edge (u, v) doesn't
necessarily mean that there is an edge (v, u) as well. The
edges in such a graph are represented by arrows to show the
direction of the edge.

GRAPH APPLICATIONS
Graph is a data structure which is used extensively in our real-
life.
• Social Network: Each user is represented as a node and all

their activities, suggestion and friend list are represented as
an edge between the nodes.
•Google Maps: Various locations are represented as vertices

or nodes and the roads are represented as edges and graph
theory is used to find shortest path between two nodes.
• Recommendations on e-commerce websites: The

“Recommendations for you” section on various e-commerce
websites uses graph theory to recommend items of similar
type to user’s choice.

GRAPH REPRESENTATION
Graphs are commonly represented in two ways:
•Matrices: Incidence and Adjacency
• Adjacency list
Depends on graph type the information in matrices and list
nodes can be different.
We will consider matrix representations only in this lecture.

INCIDENCE MATRIX
Incidence matrix is that matrix which represents the graph
such that with the help of that matrix we can draw a graph. As
in every matrix, there are also rows and columns in incidence
matrix.
The rows of the matrix represent the number of nodes and
the column of the matrix represent the number of edges in
the given graph. If there are N number of rows in a given
incidence matrix, that means in a graph there are N number
of nodes. Similarly, if there are M number of columns in that
given incidence matrix, that means in that graph there are M
number of edges.

INCIDENCE MATRIX
For undirected graphs incidence matrix consists of values Bij:

• 1 – if vertex vi is incidence with edge ej

• 0 – otherwise

M 0-1 0-2 0-3 1-2

0 1 1 1 0

1 1 0 0 1

2 0 1 0 1

3 0 0 1 0

INCIDENCE MATRIX
For directed graphs incidence matrix consists of values Bij:

• -1 – if edge ej leaves vertex vi

• 1 – if edge ej enters vertex vi

• 0 – otherwise M 0-1 0-2 0-3 1-2

0 -1 1 -1 0

1 1 0 0 -1

2 0 -1 0 1

3 0 0 1 0

INCIDENCE MATRIX
A weighted graph can be represented using the weight of the
edge in place of a 1.
For example, the incidence matrix of the graph to the left is:

M 0-1 0-2 0-3 1-2

0 -5 2 -8 0

1 5 0 0 -3

2 0 -2 0 3

3 0 0 8 0

5

8

2

3

INCIDENCE MATRIX
Advantages:
•Good for sparse graphs
• Constant-time vertex lookups – O(1)
Disadvantages:
• Takes up a lot of space for dense graphs
•More complex to implement and use in computer programs
• Slow to iterate over all edges

ADJACENCY MATRIX
An adjacency matrix is a 2D array of V x V vertices. Each row
and column represent a vertex.
For undirected graph if the value of any matrix element Bij is
1, it represents that there is an edge connecting vertex i and
vertex j. M 0 1 2 3

0 0 1 1 1

1 1 0 1 0

2 1 1 0 0

3 1 0 0 0

ADJACENCY MATRIX
For directed graphs the value of adjacency matrix Bij is 1 if
there is a edge with direction from vertex i to vertex j.

M 0 1 2 3

0 0 1 0 1

1 0 0 1 0

2 1 0 0 0

3 0 0 0 0

ADJACENCY MATRIX
A weighted graph can be represented using the weight of the
edge in place of a 1.
For example, the adjacency matrix of the graph to the left is:

5

8

2

3

M 0 1 2 3

0 0 5 0 8

1 0 0 3 0

2 2 0 0 0

3 0 0 0 0

ADJACENCY MATRIX
Advantages:
• Easy to implement and use in computer programs
•Good for dense graphs (graphs with many edges)
• Constant-time edge lookups – O(1)
Disadvantages:
• Takes up a lot of space for sparse graphs (graphs with few

edges)
• Slow to iterate over all edges or vertices

PRACTICE: TASK SEQUENCE PROBLEM
Problem. You have N tasks (1<=N<=100) you need to do. You also have a
K pair of the tasks (1<=K<=100) which describes the task dependency –
the second task must be done after the first one. You need to sort the
tasks in the correct order for execution.
Example. You have N=9 tasks and K=9 pairs: (4,1) (1,2) (2,3) (2,7) (5,6)
(7,6) (1,5) (8,5) (8,9). Correct orders are 8,9,4,1,5,2,3,7,6 or
4,1,2,3,8,5,7,6,9 or 4,8,9,1,2,3,5,7,6. But this order 4,1,5,2,3,7,6,8,9 is
incorrect because the task 5 can’t be done before the task 8.
Task. Create a program using C/C++/Python to solve this problem.
Input. Two strings: the first one with two numbers N and K divided by
space and the second one with K pairs of the tasks indexes divided by
spaces.
Output. The correct order of the task execution (tasks indexes divided by
spaces).

PRACTICE: TASK SEQUENCE PROBLEM
Graph from example and its adjacency matrix M. The D is
‘done’ vector.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
0
0
0
0
0
0
0
0
0

AThe A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 1.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
0
0
0
1
0
0
0
0
0

A 4The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 2.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
0
0
0
1
0
0
0
1
0

A 4 8The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 3.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
0
0
1
0
0
0
1
0

A 4 8 1The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 4.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
0
1
0
0
0
1
0

A 4 8 1 2The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 5.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
1
1
0
0
0
1
0

A 4 8 1 2 3The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 6.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
1
1
1
0
0
1
0

A 4 8 1 2 3 5The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 7.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
1
1
1
0
1
1
0

A 4 8 1 2 3 5 7The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 8.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
1
1
1
1
1
1
0

A 4 8 1 2 3 5 7 6The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Traverse matrix M by columns N times. Step 9.

1

8

2 3

75

6

4

9

M 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0
8 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0

D
1
1
1
1
1
1
1
1
1

A 4 8 1 2 3 5 7 6 9The A is output result.

PRACTICE: TASK SEQUENCE PROBLEM
Code example:
#include <iostream>
#define MAX 101
int N, K, A[MAX], M[MAX][MAX];
int main()
{
 cin >> N >> K;
 int f, s;
 for(int i = 0; i < K; i++)
 {
 cin >> f >> s;
 M[f][s] = 1;
 }
 for(int i = 1; i <= N; i++)
 {
 int v = 0;
 // Your code here
 cout << v << “ “;
 }
 return 0;
}

THANK
YOU!

	Matrices for graph representation
	Graph Data Structure
	Graph Data Structure (2)
	Graph Data Structure (3)
	Graph Terminology
	Graph Applications
	Graph representation
	Incidence matrix
	Incidence matrix (2)
	Incidence matrix (3)
	Incidence matrix (4)
	Incidence matrix (5)
	Adjacency matrix
	Adjacency matrix (2)
	Adjacency matrix (3)
	Adjacency matrix (4)
	Practice: Task sequence problem
	Practice: Task sequence problem (2)
	Practice: Task sequence problem (3)
	Practice: Task sequence problem (4)
	Practice: Task sequence problem (5)
	Practice: Task sequence problem (6)
	Practice: Task sequence problem (7)
	Practice: Task sequence problem (8)
	Practice: Task sequence problem (9)
	Practice: Task sequence problem (10)
	Practice: Task sequence problem (11)
	Practice: Task sequence problem (12)
	Thank you!

