IMAGE BLURRING

* Convolutions and Kernels
* Median filter

* Box blur

/ * @Gaussian blur



The small group of pixels is a small 3x3 or a 5x5 image called a Kernel represented
by a simple matrix. Think of this approach as using a very small image template
that is 3x3 or 5x5 pixels in size as opposed to a larger image template.

We are going to dig into a technique that is incredibly important in computer
vision. This fundamental technique is known as convolution. A convolution is done
by multiplying a pixel and its neighboring pixel’s color values by a kernel using a
sliding window. Convolutions and Kernels manipulate pixels not solely based on
the value of the pixel itself, but on the pixels in the immediate vicinity of a
particular pixel (sometimes referred to as Connected Pixels or Neighbors). A
convolution is just another type of Image.

Kernel 3x3 Pixels




Median filtering is a nonlinear method used to remove noise from images. It is
widely used as it is very effective at removing noise while preserving edges. It is
particularly effective at removing ‘salt and pepper’ type noise. The median filter
moves through the image pixel by pixel, replacing each value with the median
value of neighboring pixels. The pattern of neighbors is called the "window",
which slides, pixel by pixel, over the entire image. The median is calculated by first
sorting all the pixel values from the window into numerical order, and then
replacing the pixel being considered with the middle (median) pixel value.

Use of a median filter to improve an image severely corrupted by defective pixels.

e e g i i




The following example shows the application of a median filter to a simple one-
dimensional signal. A window size of three is used, with one entry immediately
preceding and following each entry. For the edges, we do padding — repeat the
border pixels.

X=1 3 9 4 | 52 3 3 6 2 2 9

] = median[339] =3
1] = median[349] =4
2] = median[4952] =9
3] = median[3452] =4
] = median[3 8 52] =3

5] = median[368] =6
6] = median[26 8] =6
7] = median[22 6] =2
8] = median[229] =2
9] = median[299] =9

.-<. .-< .-< .-< .-<.
A W NEFERO

< < < < <
O 00 ~d O U

Y=| 3 4 9 4 8 6 6 2 2 9




MEDIAN FILTER

The 2D median filter example with a 3x3 window with extended borders.

Yelgu=lo
Yelgt=lo
Yelgu=lo

RN R R[N R

= (00NN O NP

W | L = |Pd|O
N | PO O N |K

Input

W W I NI RN W

ofjojlur NN O W |k

001112244]
000112244

000023355]

1|1
1111 2
1111
2 | 2|2
Output




The Median filter examples

The original d:iltered with the median_filter

50 100 150 200 ‘ 0 50 100 150 200 250 300

3px median filter 10px median filter



The Box Blur (sometimes referred to as Mean or Average Blur), looks at each pixel
of an image and replaces its value with the average value of all of its surrounding

pixels. In our example, we will be using a simple 3x3 matrix kernel where all values
are 1. The box blur kernel:

1111
1111
1111

While the above kernel is incredibly simple — it’s going to help us understand how
convolutions work. In this convolution, because the matrix values are all 1, the
result of each window is the average value of the center pixel and its neighbors.
Since we are using a sliding window, we cannot update the pixel value in-line
(otherwise it would impact the next time the window shifts). We update a new

image with the average value at the position corresponding to the center of the
kernel.



The Box Blur is an example of a convolution. It uses a sliding window the size of
the kernel to calculate the average of a neighborhood of pixels.

1. Multiply the 1st neighbor pixel by the 1st value in the Kernel

3x3 Box
Blur Kernel

Original Image




Using a sliding window, the convolution will process all of the pixels in the image.
Once the convolution is completed, our new image will appear blurred.

Box Blur Convolution

98 203|202|170

el 2041201157

209 202|194|144

202|/201|194|156

151189]185|181

1891185/194|227

Original Image Blurred Image




In the above animation, notice the pixels with the values of 8 and 9. These two
pixels, in particular, are outliers compared to all the other pixels in the images.
These pixels stand out from the rest of the pixels. After the convolution, these
pixel values are replaced with 109 and 95 bringing those values more in alignment
with the neighbors.

Also visible in the animation is that the pixels closest to the edges are not
calculated in the convolution. There are methods of dealing with those border
pixels in three different ways. The pixels can be discarded, they can be carried
over from the original, or an average of the available pixels can be calculated
(padding or mirroring).

Let’s consider the image 6x6 pixels and kernel 5x5 pixels. The image should be
extended with 2 pixels in each direction.



BOX BLUR

(A N[O N|IN|O|O
A= N (O|N | N|OJ]O
Mmio Mmiom
— | - o | O NN
oo i [ v I | <
< | < |
Al el | N | =N
A A N[ A | A | N[ ]|
(A | A [ N[O N[N O|(O| O
(A | A [ N[O N[N O|(O| O
(A A [ N[O | N[N ]|]OJO| O
N[NNI [(N|[=HH| N[N OO | N
| A= (N QIO (= | NN (AN
OO0 (T | = =H |||
(SIS (N[O N (W | e} |
A A [N ™| =[N |
A A | A [ N[ | A [ N]| | |
A A | A [ N|[A | A [ N]| | |

4

Mirroring

Padding



BOX BLUR

The Box Blur examples

Adaptive Blurred Image




Gaussian kernel, as its name implies, has the shape of the function ‘Gaussian
distribution’” to define the weights inside the kernel, which are used to compute
the weighted average of the neighboring points (pixels) in an image.




In other words, each value in the Gaussian filter is from the zero mean Gaussian
distribution. One thing we need to keep in mind is that the kernel size is
dependent on the standard deviation o of the Gaussian function:

o = 2 with 30x30 g =5 with 30x30
kernel kernel




By setting the standard deviation o, we can control to what certain extent we
smooth the image. In other words, the higher the standard deviation gets the

stronger effect of smoothing effect the image has.
Here is one example of a simple and easy-to-read 3x3 Gaussian Kernel:

112 |1
2 | 4] 2
112 |1

The convolution of a Gaussian kernel is identical to the Box Blur kernel. Think of
the box blur as dividing the sum of the kernel values, which totals 9. In the
Gaussian kernel illustrated above, the sum of the kernel values is 16.



The Gaussian convolution is identical to the Box Blur — we just use a different set
IR CHEREINES

1. Multiply the 1st neighbor pixel by the 1st value in the Kernel

Original Image




The Gaussian Kernels with sizes 3x3, 5x5 and 7x7 for o ~ 1:

¢ |u]ofwlolule

[+ ]l onfu]s)
oo w]=lwlofe
oo 2] ]e]e




For comparison, here are the results of both a Box and Gaussian Blur

Image with Image with
Box Blur Gaussian Blur




As a quick visualization exercise, let’s also compare what the Box Blur and
Gaussian Blur kernels would look like if we were to plot them in a 2D graph.

Gaussian Blur
Kernel

Box Blur Kernel




Here is a visual comparison between Gaussian and Median filter. We can observe that when the
noise level is too high, although the amount of noise pixels decreases with increasing Gaussian
filter size, they still exist in the image. The median filter, on the other hand, already removes most
of the noise pixels with a 3x3 filter size.

aussian

Median

{1
’h‘:"
v,’.



GAUSSIAN BLUR

The Gaussian Blur examples

v = -
v . —
: _n® Ve
". - e -.": Z_ ;,;x‘iu-;&qu;s:t ;;“‘:‘ ) * "
3 _ L Y Y T ‘
% R~ =4 .

Original

n

StDev = 3

StDev = 10







