
TREE DATA STRUCTURES

• Binary search tree

• K-D tree

• Quadtree

• R-tree

Author: prof. Yevhenii Borodavka

BINARY SEARCH TREE
In computer science, a binary search tree (BST), also called an ordered or sorted
binary tree, is a rooted binary tree data structure with the key of each internal
node being greater than all the keys in the respective node's left subtree and less
than the ones in its right subtree. The time complexity of operations on the binary
search tree is linear with respect to the height of the tree.
A binary search tree is a data structure that quickly allows us to maintain a sorted
list of numbers.
• It is called a binary tree because each tree node has a maximum of two

children.
• It is called a search tree because it can be used to search for the presence of a

number in O(log(n)) time.
The properties that separate a binary search tree from a regular binary tree is:
1. All nodes of the left subtree are less than the root node.
2. All nodes of the right subtree are more than the root node.
3. Both subtrees of each node are also BSTs.

BINARY SEARCH TREE
A tree having a right subtree with one value smaller than the root is shown to
demonstrate that it is not a valid binary search tree.

BINARY SEARCH TREE
Search Operation depends on the property of BST that if each left subtree has
values below the root and each right subtree has values above the root.
If the value is below the root, we can say for sure that the value is not in the right
subtree; we need to only search in the left subtree and if the value is above the
root, we can say for sure that the value is not in the left subtree; we need to only
search in the right subtree.
Algorithm:
If root == NULL

return NULL;
If number == root->data

return root->data;
If number < root->data

return search(root->left)
If number > root->data

return search(root->right)

BINARY SEARCH TREE
Let us try to visualize this with a diagram. We try to find value 4. It is not found so,
traverse through the left subtree of 8.

BINARY SEARCH TREE
4 is not found so, traverse through the right subtree of 3.

BINARY SEARCH TREE
4 is not found so, traverse through the left subtree of 6.

BINARY SEARCH TREE
4 is found

BINARY SEARCH TREE
If the value is found, we return the value so that it gets propagated in each
recursion step as shown in the image below.

BINARY SEARCH TREE
The performance of a binary search tree is dependent on the order of insertion of
the nodes into the tree since arbitrary insertions may lead to degeneracy; several
variations of the binary search tree can be built with guaranteed worst-case
performance. The basic operations include search, traversal, insert and delete.
BSTs with guaranteed worst-case complexities perform better than an unsorted
array, which would require linear search time.
The complexity analysis of BST shows that, on average, the insert, delete, and
search takes O(log (n)) for n nodes. In the worst case, they degrade to that of a
singly linked list O(n).
The binary search tree algorithm was discovered independently by several
researchers, including P.F. Windley, Andrew Donald Booth, Andrew Colin, and
Thomas N. Hibbard in 1960.
The BST is allowed to use in one dimensional space only.

K-D TREE
A K-Dimensional Tree (also known as K-D Tree) is a space-partitioning data
structure for organizing points in a K-Dimensional space. This data structure acts
similarly to a binary search tree with each node representing data in the multi-
dimensional space.
The K-Dimensional Tree was first developed in 1975 by Jon Bentley. The purpose
of the tree was to store spatial data with the goal of accomplishing:
1. Nearest neighbor search.
2. Range queries.
3. Fast look-up.
K-D Trees are capable of guaranteeing a log2(n) depth, where n is the number of
points in the set. Since this data structure takes place in a multi-dimensional
space, this data structure is incredibly useful right now. Some modern applications
of a K-D Tree could range from astrophysical simulation to computer graphics to
even data compression. Thanks to being similar in performance to a Binary Search
Tree, this data structure also works exceedingly fast.

K-D TREE
A K-D Tree is a binary tree in which each node represents a K-dimensional point.
Every non-leaf node in the tree acts as a hyperplane, dividing the space into two
partitions. This hyperplane is perpendicular to the chosen axis, which is associated
with one of the K dimensions.

K-D TREE
There are different strategies for choosing an axis when dividing, but the most
common one would be to cycle through each of the K dimensions repeatedly and
select a midpoint along it to divide the space. For instance, in the case of 2-
dimensional points with x and y axes, we first split along the x-axis, then the y-
axis, and then the x-axis again, continuing in this manner until all points are
accounted for:

K-D TREE
The construction of a K-D Tree involves recursively partitioning the points in the
space, forming a binary tree. We start the process by selecting the X axis.

K-D TREE
The next split we perform along the Y axis.

K-D TREE
Continue splitting till it is possible.

K-D TREE
If the algorithm is executed correctly, the resulting tree will be balanced, with
each leaf node being approximately equidistant from the root.

K-D TREE
K-D trees are widely used for nearest-neighbor searches, where the objective is to
find the point in the tree that is closest to a given query point.
To accomplish this, we traverse the tree and compare the distance between the
query point and the points in each leaf node. Starting at the root node, we
recursively move down the tree until we reach a leaf node, following a similar
process as when inserting a node. At each level, we decide whether to go down
the left or right subtree based on which side of the splitting hyperplane the query
point lies.
Once we reach a leaf node, we compute the distance between the query point
and that leaf node, and save it as the “current best”. During each unwinding of
the recursion, we keep track of the distance and update the current
best. Additionally, at each step, we check whether there could be a point on the
other side of the splitting plane that is closer to the search point than the current
best.

K-D TREE
Conceptually, we are checking if a hypersphere around the query point with a
radius equal to the current nearest distance intersects the splitting hyperplane of
the node.
Since the hyperplanes are all axis-aligned this is implemented as a simple
comparison to see whether the absolute distance |cur_bestaxis –cur_nodeaxis|
between the splitting coordinate of the search point and the current node is lesser
than the overall distance d from the search point to the current best.
If the hypersphere intersects the plane, there may be nearer points on the other
side of the plane. Therefore, we move down the other branch of the tree from
the current node, looking for closer points and following the same recursive
process as the entire search.
If the hypersphere doesn’t intersect the splitting plane, we continue unwinding
and walking up the tree and eliminate the entire branch on the other side of that
node. After we finish this process for the root node, the search is complete.

K-D TREE
One thing to note is that the distance metric in our example is the classical
Euclidian distance defined as:

𝑑 𝑝, 𝑞 = (𝑝1 − 𝑞1)
2+(𝑝2 − 𝑞2)

2+⋯+ (𝑝𝑛 − 𝑞𝑛)
2

The search procedure can certainly be generalized to other distance metrics,
however, the “hypersphere” which we test for intersection with the hyperplane
will be replaced with the equivalent geometrical object for the given metric.
In the next illustration, we are querying the black crossed dot’s nearest neighbor
in the tree. We have already traversed down the tree reached the leaf node C and
saved it as the current best. So, we are unwinding and comparing the Euclidian
distance from it to the query point with the absolute distance from it to the next
current node B.

K-D TREE
Here the Euclidian distance is bigger, meaning the hypersphere intersects the
cutting plane of B and therefore we switch to traversing the E branch.

K-D TREE
The time complexity of building a K-D tree from a set of n points in K-dimensional
space depends on the median finding algorithm used.
If a more efficient median-of-medians algorithm is used the total complexity
is O(n*log(n)) on average. This is because, at each level of the tree, a new
hyperplane is chosen to split the set of points, which takes O(n) time. Since the
tree is binary, the number of levels in the tree is O(log(n)). Therefore, the total
time complexity of building the K-D tree is O(n*log(n)). However, in the worst
case, the construction time can be O(n2) which can occur if the tree is very
unbalanced. if instead, a classical sort algorithm with O(n*log(n)) complexity is
used to find the median, the total complexity becomes O(n*log2(n)).
The time complexity of the nearest neighbor search in a K-D tree is O(n*log(n)) on
average, where n is the number of points in the tree. This is because the search
process involves traversing the tree in a binary search-like manner, where the
number of nodes visited is proportional to the height of the tree, which
is O(log(n)) on average.

QUADTREE
A quadtree is a tree data structure in which each internal node has exactly four
children. Quadtrees are the two-dimensional analog of octrees and are most often
used to partition a two-dimensional space by recursively subdividing it into four
quadrants or regions. The data associated with a leaf cell varies by application, but
the leaf cell represents a "unit of interesting spatial information".
The subdivided regions may be square or rectangular or may have arbitrary
shapes. This data structure was named a quadtree by Raphael Finkel and J.L.
Bentley in 1974. A similar partitioning is also known as a Q-tree.
All forms of quadtrees share some common features:
• They decompose space into adaptable cells.
• Each cell (or bucket) has a maximum capacity. When maximum capacity is

reached, the bucket splits.
• The tree directory follows the spatial decomposition of the quadtree.

QUADTREE
Quadtrees may be classified according to the type of data they represent,
including areas, points, lines, and curves. Quadtrees may also be classified by
whether the shape of the tree is independent of the order in which data is
processed. The following are common types of quadtrees:
• Region quadtree
• Point quadtree
• Node structure for a point quadtree
• Point-region (PR) quadtree
• Edge quadtree
• Polygonal map (PM) quadtree
• Compressed quadtrees

QUADTREE
The region quadtree represents a partition of space in two dimensions by
decomposing the region into four equal quadrants, subquadrants, and so on with
each leaf node containing data corresponding to a specific subregion. Each node
in the tree either has exactly four children or has no children (a leaf node).

a b

c d

x

z

11

4

7

3

2

1
5

6t

y

14
8

12
13

9

10

R

a b c d

x y z t

1

2

5

6

5

6

14

2

3

6

6 8

11

12

13

3

4

7

9

10

13

QUADTREE
The point request is processed the next way. The tree is traversed from root to
leaf and at each level the node which contains the point P is chosen.

a b

c d

x

z

11

4

7

3

2

1
5

6t

y

14
8

12
13

9

10

R

a b c d

x y z t

1

2

5

6

5

6

14

2

3

6

6 8

11

12

13

3

4

7

9

10

13

QUADTREE
Let’s consider dynamic object insertion. The object must be added to each quad it
lies on. The leaf nodes of the current quad are checked and there are two possible
options: quad is overloaded (15) and quad is not overloaded (16). When the first
case occurs we have to split the quad into 4 quads and rearrange objects.

a b

c d

x

z

11

4

7

3

2

1
5

6t

y

14

12
13

9

10

15

16

R

a b c d

x y z t

1

2

5

6

5

6

14

2

3

6

6

16

3

4

7

16

9

10

13

m

q

n

8

m n p q

8

11

11

15

8

12

12

13

15

p

QUADTREE
A region quadtree with a depth of n may be used to represent an image
consisting of 2n×2n pixels, where each pixel value is 0 or 1. The root node
represents the entire image region. If the pixels in any region are not entirely 0s or
1s, it is subdivided. In this application, each leaf node represents a block of pixels
that are all 0s or all 1s. Note the potential savings in terms of space when these
trees are used for storing images; images often have many regions of considerable
size that have the same color value throughout. Rather than store a big 2-D array
of every pixel in the image, a quadtree can capture the same information
potentially many divisive levels higher than the pixel-resolution-sized cells that we
would otherwise require. The tree resolution and overall size are bounded by the
pixel and image sizes.

QUADTREE
The Point quadtree is an adaptation of a binary tree used to represent two-
dimensional point data. It shares the features of all quadtrees but is a true tree as
the center of a subdivision is always on a point. It is often very efficient in
comparing two-dimensional, ordered data points, usually operating in O(log(n))
time. Point quadtrees are worth mentioning for completeness, but they have
been surpassed by K-D trees as tools for generalized binary search.
An example of the interactive Point quadtree is here.

https://jimkang.com/quadtreevis/

R-TREE
R-trees are tree data structures used for spatial access methods, i.e., for indexing
multi-dimensional information such as geographical coordinates, rectangles, or
polygons. The R-tree was proposed by Antonin Guttman in 1984 and has found
significant use in both theoretical and applied contexts.
The key idea of the data structure is to group nearby objects and represent them
with their minimum bounding rectangle in the next higher level of the tree; the
"R" in the R-tree is for the rectangle. Since all objects lie within this bounding
rectangle, a query that does not intersect the bounding rectangle also cannot
intersect any of the contained objects. At the leaf level, each rectangle describes a
single object (consists of object ID and MBR); at higher levels, the aggregation
includes an increasing number of objects (consists of node ID and directory
rectangle). This can also be seen as an increasingly coarse approximation of the
data set.

R-TREE
Set of rectangles indexed by an R-Tree and the corresponding R-Tree structure.

R-TREE
There are next variations of the R-tree:
• Priority R-tree
• R*-tree
• R+ tree
• Hilbert R-tree
• X-tree
Properties of R-tree:
• Consists of a single root, internals nodes, and leaf nodes.
• The root contains the pointer to the largest region in the spatial domain.
• Parent nodes contain pointers to their child nodes where the region of child

nodes completely overlaps the regions of parent nodes.
• Leaf nodes contain data about the MBR to the current objects.
• MBR-Minimum bounding region refers to the minimal bounding box parameter

surrounding the region/object under consideration.

R-TREE
The number of entries of a node (except for the root) in the tree is between m
and M where m∈[0, M/2]. Below is the example with m=2 and M=4.

a

b

c
d

11

4

7

3

2

1
5

6

14
8

12
13

9

10

R

a b c d

3

4

7

10

1

2

5

6

8

9

14

11

12

13

R-TREE
The point search function is performed in two stages. First, a search is made for all
nodes whose directory rectangle contains the point P. All subtrees are considered,
since the point may belong to the intersection of several rectangles.

a

b

c
d

11

4

7

3

2

1
5

6

14
8

12
13

9

10

R

a b c d

3

4

7

10

1

2

5

6

8

9

14

11

12

13

R-TREE
The time complexity of the search.
• If MBRs do not overlap on q, the complexity is O(logm(N)).
• If MBRs overlap on q, it may not be logarithmic, in the worst case when all

MBRs overlap on q, it is O(N).

Comparison with Quadtrees:
• Tiling level optimization is required in Quadtrees whereas an R-tree doesn’t

require any such optimization.
• Quadtree can be implemented on top of existing B-tree whereas R-tree follows

a different structure from a B-tree.
• Spatial index creation in Quadtrees is faster as compared to R-trees.
• R-trees are faster than Quadtrees for Nearest Neighbor queries while for

window queries, Quadtrees are faster than R-trees.

R-TREE
Insertion – choose a leaf node
• Traverse the R-tree top-down, starting from the root, at each level

 If there is a node whose directory rectangle contains the MBR to be
inserted, then search the subtree

 Else choose a node such that the enlargement of its directory rectangle is
minimal, then search the subtree

 If more than one node satisfies this, choose the one with the smallest area
• Repeat until a leaf node is reached
Insertion – insert into the leaf node
• If the leaf node is not full, an entry [MBR, OID] is inserted
• Else // the leaf node is full

 Split the leaf node
 Update the directory rectangles of the ancestor nodes if necessary

Let’s consider both examples.

R-TREE
Insert object 15. The directive rectangle of the leaf node d is not full, so we just
adding object 15 into this leaf.

a

b

c
d

11

4

7

3

2

1
5

6

14
8

12
13

9

10

R

a b c d

3

4

7

10

1

2

5

6

8

9

14

11

12

13

15

15

R-TREE
Insert object 16. The directive rectangle of the leaf node b is full, so we need to
split node b and rearrange objects 3, 4, 7, 10, and 16. Then we have 5 leaf nodes,
but our M=4, so we need to add one internal level to the R-tree.

a

b

c
d

11

4

7

3

2

1
5

6

14
8

12
13

9

10

R

a b c d

3

4

7

1

2

5

6

8

9

14

11

12

13

15

15

16e

P Q

e

10

16

Thank you!

