
POLYGON MESHES

• Introduction

• Vertex-vertex meshes

• Face-vertex meshes

• Winged-edge meshes

• File structures for storing meshes

Author: prof. Yevhenii Borodavka



INTRODUCTION
In 3D computer graphics and solid modeling, a polygon mesh is a collection of
vertices, edges, and faces that define the shape of a polyhedral object. The faces
usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple
convex polygons (n-gons), since this simplifies rendering, but may also be more
generally composed of concave polygons, or even polygons with holes.



INTRODUCTION
Objects created with polygon meshes must store different types of elements.
These include vertices, edges, faces, polygons, and surfaces. In many applications,
only vertices, edges, and either faces or polygons are stored.
Vertex — a position (usually in 3D space) along with other information such as
color, normal vector, and texture coordinates.
Edge — a connection between two vertices.
Face — a closed set of edges, in which a triangle face has three edges, and a quad
face has four edges. A polygon is a coplanar set of faces. In systems that support
multi-sided faces, polygons and faces are equivalent. However, most rendering
hardware supports only 3- or 4-sided faces, so polygons are represented as
multiple faces.
Polygon meshes may be represented in a variety of ways, using different methods
to store the vertex, edge, and face data.



VERTEX-VERTEX MESHES



VERTEX-VERTEX MESHES
Vertex-vertex (VV) meshes represent an object as a set of vertices connected to
other vertices. This is the simplest representation, but not widely used since the
face and edge information is implicit. Thus, it is necessary to traverse the data in
order to generate a list of faces for rendering. In addition, operations on edges
and faces are not easily accomplished.

However, VV meshes benefit from small storage space and efficient morphing of
shape. The above figure shows a four-sided box as represented by a VV mesh.
Each vertex indexes its neighboring vertices. The last two vertices, 8 and 9 at the
top and bottom center of the "box-cylinder", have four connected vertices rather
than five. A general system must be able to handle an arbitrary number of vertices
connected to any given vertex.



FACE-VERTEX MESHES



FACE-VERTEX MESHES
Face-vertex (FV) meshes represent an object as a set of faces and a set of vertices. This is the most
widely used mesh representation, being the input typically accepted by modern graphics
hardware.
Face-vertex meshes improve on VV-mesh for modeling in that they allow explicit lookup of the
vertices of a face, and the faces surrounding a vertex. The above figure shows the "box-cylinder"
example as an FV mesh. Vertex v5 is highlighted to show the faces that surround it. Notice that, in
this example, every face is required to have exactly 3 vertices. However, this does not mean every
vertex has the same number of surrounding faces.
For rendering, the face list is usually transmitted to the GPU as a set of indices to vertices, and the
vertices are sent as position/color/normal structures (in the figure, only position is given). This has
the benefit that changes in shape, but not geometry can be dynamically updated by simply
resending the vertex data without updating the face connectivity.
Modeling requires easy traversal of all structures. With face-vertex meshes, it is easy to find the
vertices of a face. Also, the vertex list contains a list of faces connected to each vertex. Unlike VV
meshes, both faces and vertices are explicit, so locating neighboring faces and vertices is constant
time. However, the edges are implicit, so a search is still needed to find all the faces surrounding a
given face. Other dynamic operations, such as splitting or merging a face, are also difficult with
face-vertex meshes.



WINGED-EDGE MESHES
Introduced by Baumgart in 1975,
winged-edge meshes explicitly
represent the vertices, faces, and
edges of a mesh. This representation is
widely used in modeling programs to
provide the greatest flexibility in
dynamically changing the mesh
geometry because split and merge
operations can be done quickly. Their
primary drawback is large storage
requirements and increased
complexity due to maintaining many
indices.



WINGED-EDGE MESHES
Winged-edge meshes address the issue of traversing from edge to edge and
providing an ordered set of faces around an edge. For any given edge, the number
of outgoing edges may be arbitrary. To simplify this, winged-edge meshes provide
only four, the nearest clockwise and counter-clockwise edges at each end. The
other edges may be traversed incrementally. The information for each edge
therefore resembles a butterfly, hence "winged-edge" meshes. The above figure
shows the "box-cylinder" as a winged-edge mesh. The total data for an edge
consists of 2 vertices (endpoints), 2 faces (on each side), and 4 edges (winged-
edge).
Rendering of winged-edge meshes for graphics hardware requires generating a
Face index list. This is usually done only when the geometry changes. Winged-
edge meshes are ideally suited for dynamic geometry, such as subdivision surfaces
and interactive modeling since changes to the mesh can occur locally. Traversal
across the mesh, as might be needed for collision detection, can be accomplished
efficiently.



FILE STRUCTURES FOR STORING MESHES
There are several file structures to store meshes. We will consider three of them:
explicit representation, list of vertices, and list of edges.

Faces Coordinates
f1 x1y1z1, x2y2z2, x6y6z6, x5y5z5

f2 x2y2z2, x3y3z3, x7y7z7, x6y6z6

The disadvantages of this representation are that, firstly, the relationships of the 
faces are set implicitly, and secondly, the coordinates of each vertex appear as 
many times as the faces have this vertex.

In explicit representation, an object consists of a set of faces, each of which is a 
polygon consisting of a sequence of vertex coordinates:



FILE STRUCTURES FOR STORING MESHES
To avoid repeating the coordinates of the vertices, you can separate them into an
independent structure. In this case, not the coordinates of the vertices, as in the
previous case, but their indices in the array of vertex coordinates are associated
with the faces. Example:

Vertices Coordinates Faces Vertices
v1 x1y1z1 f1 v1v2v3v4

v2 x2y2z2 f2 v6v2v1v5

v3 x3y3z3 f3 v7v3v2v6

v4 x4y4z4 f4 v8v4v3v7

v5 x5y5z5 f5 v5v1v4v8

v6 x6y6z6 f6 v8v7v6v5

v7 x7y7z7

v8 x8y8z8



FILE STRUCTURES FOR STORING MESHES
The list of edges describes faces through the edges. The faces vertices are defined
explicitly via edges. Example:

Edges Vertices Vertices Coordinates Faces Edges
e1 v1v2 v1 x1y1z1 f1 e1e2e3e4

e2 v2v3 v2 x2y2z2 f2 e9e6e1e5

e3 v3v4 v3 x3y3z3 f3 e10e7e2e6

e4 v4v1 v4 x4y4z4 f4 e11e8e7e3

e5 v1v5 v5 x5y5z5 f5 e12e5e4e8

e6 v2v6 v6 x6y6z6 f6 e12e11e10e9

e7 v3v7 v7 x7y7z7

e8 v4v8 v8 x8y8z8

e9 v5v6

e10 v6v7

e11 v7v8

e12 v8v5



Thank you!


