Introduction
Vertex-vertex meshes
Face-vertex meshes
Winged-edge meshes

File structures for storing meshes



INTRODUCTION

In 3D computer graphics and solid modeling, a polygon mesh is a collection of
vertices, edges, and faces that define the shape of a polyhedral object. The faces
usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple
convex polygons (n-gons), since this simplifies rendering, but may also be more
generally composed of concave polygons, or even polygons with holes.

b A P
,:\D == \@\\{f& N

vertices edges faces polygons surfaces




Objects created with polygon meshes must store different types of elements.
These include vertices, edges, faces, polygons, and surfaces. In many applications,
only vertices, edges, and either faces or polygons are stored.

Vertex — a position (usually in 3D space) along with other information such as
color, normal vector, and texture coordinates.

Edge — a connection between two vertices.

Face — a closed set of edges, in which a triangle face has three edges, and a quad
face has four edges. A polygon is a coplanar set of faces. In systems that support
multi-sided faces, polygons and faces are equivalent. However, most rendering
hardware supports only 3- or 4-sided faces, so polygons are represented as
multiple faces.

Polygon meshes may be represented in a variety of ways, using different methods
to store the vertex, edge, and face data.



Vertex-Vertex Meshes (VV)

Vertex List

m vivdiv4v3vo
v2v6 v>v0O V9
v3v/vevlvo
v2ve v7 v4 v9

vivOv3v7v8
vb vl vOv4 v8
v/ v2vlv5v8

v4 v3 v2 vb v8
v4 v5 ve v7
vOvl v2v3




Vertex-vertex (VV) meshes represent an object as a set of vertices connected to
other vertices. This is the simplest representation, but not widely used since the
face and edge information is implicit. Thus, it is necessary to traverse the data in
order to generate a list of faces for rendering. In addition, operations on edges
and faces are not easily accomplished.

However, VV meshes benefit from small storage space and efficient morphing of
shape. The above figure shows a four-sided box as represented by a VV mesh.
Each vertex indexes its neighboring vertices. The last two vertices, 8 and 9 at the
top and bottom center of the "box-cylinder", have four connected vertices rather
than five. A general system must be able to handle an arbitrary number of vertices
connected to any given vertex.



Face-Vertex Meshes

Face List

Vertex List

vO v4

v5

0,0,0

f0Of1 N2 N5 17

vO v5

vi

1,0,0

2311312 N

vl v5

vé6

1,1,0

f4 5 f14 13 13

vl v6

v2

0,1,0

f6 f7 f15 f14 15

v2 v6

v7

0,0,1

f6 f7f0 f8 f11

v2 v7

v3

1,0,1

fo f1 2

v3 v7

v4

1,11

v3 v4

vO

01,1

v8

v4

5,50

f8 19 f10 N1

v5

5,.5,1

I'_.‘ 13 1; 'IL"

V6

v/

v4

Vo

vé

v7




Face-vertex (FV) meshes represent an object as a set of faces and a set of vertices. This is the most
widely used mesh representation, being the input typically accepted by modern graphics
hardware.

Face-vertex meshes improve on VV-mesh for modeling in that they allow explicit lookup of the
vertices of a face, and the faces surrounding a vertex. The above figure shows the "box-cylinder"
example as an FV mesh. Vertex v5 is highlighted to show the faces that surround it. Notice that, in
this example, every face is required to have exactly 3 vertices. However, this does not mean every
vertex has the same number of surrounding faces.

For rendering, the face list is usually transmitted to the GPU as a set of indices to vertices, and the
vertices are sent as position/color/normal structures (in the figure, only position is given). This has
the benefit that changes in shape, but not geometry can be dynamically updated by simply
resending the vertex data without updating the face connectivity.

Modeling requires easy traversal of all structures. With face-vertex meshes, it is easy to find the
vertices of a face. Also, the vertex list contains a list of faces connected to each vertex. Unlike VV
meshes, both faces and vertices are explicit, so locating neighboring faces and vertices is constant
time. However, the edges are implicit, so a search is still needed to find all the faces surrounding a
given face. Other dynamic operations, such as splitting or merging a face, are also difficult with
face-vertex meshes.



Introduced by Baumgart in 1975,
winged-edge UENES explicitly
represent the vertices, faces, and
edges of a mesh. This representation is
) NI Widely used in modeling programs to
WingedEdge Meshes o 7 N orovide the greatest flexibility in

o e dynamically changing the mesh
geometry because split and merge
operations can be done quickly. Their
primary drawback is large storage
requirements and increased
complexity due to maintaining many
indices.

vo

face 2

Winged Edge Structure




Winged-edge meshes address the issue of traversing from edge to edge and
providing an ordered set of faces around an edge. For any given edge, the number
of outgoing edges may be arbitrary. To simplify this, winged-edge meshes provide
only four, the nearest clockwise and counter-clockwise edges at each end. The
other edges may be traversed incrementally. The information for each edge
therefore resembles a butterfly, hence "winged-edge" meshes. The above figure
shows the "box-cylinder" as a winged-edge mesh. The total data for an edge
consists of 2 vertices (endpoints), 2 faces (on each side), and 4 edges (winged-
edge).

Rendering of winged-edge meshes for graphics hardware requires generating a
Face index list. This is usually done only when the geometry changes. Winged-
edge meshes are ideally suited for dynamic geometry, such as subdivision surfaces
and interactive modeling since changes to the mesh can occur locally. Traversal
across the mesh, as might be needed for collision detection, can be accomplished
efficiently.



There are several file structures to store meshes. We will consider three of them:
explicit representation, list of vertices, and list of edges.

In explicit representation, an object consists of a set of faces, each of which is a
polygon consisting of a sequence of vertex coordinates:

Faces Coordinates
f; X1Y1Z1, X5Y52Z5, XeYeZe) XcYcZo
f X5Y525, X3Y3Z3, X7Y7Z5, XcYele

The disadvantages of this representation are that, firstly, the relationships of the
faces are set implicitly, and secondly, the coordinates of each vertex appear as
many times as the faces have this vertex.



To avoid repeating the coordinates of the vertices, you can separate them into an
independent structure. In this case, not the coordinates of the vertices, as in the
previous case, but their indices in the array of vertex coordinates are associated
with the faces. Example:

Vertices Coordinates Faces Vertices
Vi X1Y1Z4 fy V1VoV3Vy
) X2Y22; f, VeVoViVs
V3 X3Y3Z3 fy V7V3VoVe
Vg XaYaZ4 fy VgV4V3Vy
Vg X5Ys5Zs fe VeV1V4Vg
Ve XsYeZe fe VgV7VeVs
V7 X7Y¥727
Vg XgYglg




The list of edges describes faces through the edges. The faces vertices are defined
explicitly via edges. Example:

Edges Vertices Vertices Coordinates | Faces Edges
€ ViV Vi X1Y1Z4 fy €,6,65€,
) VoVs Vo X2¥22; f, €5€6€, €5
€3 V3Vy V3 X3Y3Z3 fy €10€7€,€¢
€, VaVy Vg X4Y4Z4 fy €11€5€7€3
€ ViVs Vg X5Ys5Zs fe S PAAIA:
¢ VoVe Ve XsY6Z6 fe €12€11€1089
€7 V3Vy V7 X7Y7Z7
€3 V4Vg Vg XgYgZg
€9 VsVg
€10 VeV7
€11 V7Vg
€1 VgVs







