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In the mathematical field of numerical analysis, interpolation is a type of
estimation, a method of constructing (finding) new data points based on the
range of a discrete set of known data points.
Y In engineering and science, one often
| y4 has a number of data points,
' obtained by sampling or
experimentation, which represent the
, , values of a function for a limited
TYo - number of values of the independent
: ' variable. It is often required to
V3 interpolate; that is, estimate the
: | value of that function for an
intermediate value of the
independent variable.
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In mathematics, linear interpolation is a method of curve fitting using linear
polynomials to construct new data points within the range of a discrete set of
known data points.

Y Linear interpolation is performed on

each interval between two points of
| the entire set. The resulting
y,' interpolation of the curve is the union
of individual particles.
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In numerical analysis, polynomial interpolation is the interpolation of a given
bivariate data set by the polynomial of the lowest possible degree that passes
through the points of the dataset. There is always a unique such polynomial,
commonly given by two explicit formulas, the Lagrange polynomials and Newton
polynomials (divided-differences method).

The Lagrange polynomial formula:

L(x)=zyjlj(x) L= 1_[ ((j_—fc;))
=0 i=0,j#i

The Newton polynomial formula:
L, (x) = f(x0) + (x — x0)f (xg, x1) + (x — x0) (x — x1) f (X, X1, X2) + -
+(x — x07)1(x —x1) o (X — x5_1) f (%0, X1, v, Xp)
3 f(xi)
f (X0, X1, ) = ; (i = x0) o (63 — x320) (X — Xj41) o (7 — X))




Lagrange is sometimes said to require less work and is sometimes recommended
for problems in which it is known, in advance, from previous experience, how
many terms are needed for sufficient accuracy.

The divided difference methods have the advantage that more data points can be
added, for improved accuracy. The terms based on the previous data points can
continue to be used. With the ordinary Lagrange formula, to do the problem with
more data points would require re-doing the whole problem.

As can be seen from the definition of the divided differences new data points can
be added to the data set to create a new interpolation polynomial without
recalculating the old coefficients. And when a data point changes we usually do
not have to recalculate all coefficients. Furthermore, if the x; are distributed
equidistantly the calculation of the divided differences becomes significantly
easier. Therefore, the divided-difference formulas are usually preferred over
the Lagrange form for practical purposes.



In the mathematical field of numerical analysis, spline interpolation is a form of
interpolation where the interpolant is a special type of piecewise polynomial

called a spline.
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Originally, spline was a term
for elastic rulers that were bent to
pass through a number of predefined
points, or knots. These were used to
make  technical drawings for
shipbuilding and construction by
hand, as illustrated in the figure.

The spline can only be achieved if
polynomials of degree 3 or higher are
used. The classical approach is to use
polynomials of exactly degree 3 —
cubic splines.



In opposite to interpolation methods of curve fitting there are methods that try to
fit curves approximately to knots. The most known methods are the Bezier curve

and B-splines.
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The Bézier curve is named after French engineer Pierre Bézier (1910-1999), who
used it in the 1960s to design curves for Renault cars' bodywork. The
mathematical basis for Bézier curves — the Bernstein polynomials — was
established in 1912, but the polynomials were not applied to graphics until some
50 years later when mathematician Paul de Casteljau in 1959 developed de
Casteljau's algorithm, a numerically stable method for evaluating the curves.

A set of "control points” defines a Bézier curve points P, through P, where n is
called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The
first and last control points are always the curve’s endpoints; however, the
intermediate control points generally do not lie on the curve.

Given distinct points P, and P, a linear Bézier curve is simply a line between those
two points. The curve is given by

B(t)=Py+t(P;—Py)=((1—-¢t)Py+tP;,0<t<1



A quadratic Bézier curve is the path traced by the function B(t), given points P, P,
and P,

B(t) = (1—t)[(1 = t)Py + tP,] + t[(1 — )P, + tP,],0 < t < 1

which can be interpreted as the linear interpolant of corresponding points on the
linear Bézier curves from P, to P, and from P, to P, respectively. Rearranging the
preceding equation yields:

B(t) = (1—-1¢t)’Py,+2(1 —t)tP; + t?P,,0<t <1

Four points P,, P, P,, and P, in the plane or in higher-dimensional space define a
cubic Bézier curve. The curve starts at P, going toward P, and arrives at P; coming
from the direction of P,. Usually, it will not pass through P, or P,; these points are
only there to provide directional information.

B(t)=(1—-1t)3Py+3(1 —t)?tP; +3(1 — t)t*P, + t3P;,0<t < 1



Bézier curves can be defined for any degree n. The parametric formula of the
Bézier curves is:

n
B(t) = ZPib?(t),o <t<1
(=0

where Pi are called control points for the Bézier curve
b;*(t) the polynomials are known as Bernstein basis polynomials of degree n:

BM(t) = CM't'(1 — )7,
C" is the binomial coefficient:
n!
i'(n—10)!

There are also the recursive definition, explicit definition, and polynomial form of
the Bézier curves.

Ci* (1) =




The examples of the Bézier curves of degree 1, 2, 3, and 4.




In the mathematical subfield of numerical analysis, a B-spline or basis spline is a
spline function that has minimal support with respect to a given degree,
smoothness, and domain partition. Any spline function of a given degree can be
expressed as a linear combination of B-splines of that degree. Cardinal B-splines
have knots that are equidistant from each other. B-splines can be used for curve-
fitting and numerical differentiation of experimental data.

The concept of the B-spline curve came to resolve the disadvantages having
by the Bezier curve, as we all know that both curves are parametric in nature. In
the Bezier curve we face a problem, when we change any of the control points
respective locations the whole curve shape changes. But here in the B-spline
curve, only a specific segment of the curve shape gets changed or affected by the
changing of the corresponding location of the control points.

In the B-spline curve, the control points impart local control over the curve shape
rather than global control like the Bezier curve.



Let B(t) denote the curve as a function of parameter t, then B-spline is:

n+1

B(t) = Z PNK(E),  tpin St <tne 2<k<n+l,
=1

where P; is n+1 vertices of the polygon,

N (t) — normalized basis function for the B-spline.
For the i-th normalized basis function order of k (k-1 degree) defined by the Cox-
de Boor recursion formula:

1 x; <t<ux;
N-l t) = ) I — — 'l+1’
i (£) {O, otherwise

(t = x))NFH(t) N (Xirx — ONST (@)

Nik(t) =
Xi+k—-1 — Xi Xi+k — Xi+1



The x; values are elements of the knot vector, which follow the condition x,<x
There are three types of knot vectors:

e Uniform (Periodic)

* Open-Uniform

* Non-Uniform

The size of the knot vector is n+k+1.

i+1°

The uniform knot vector has constant steps between adjacent elements:
[01234]or[-0.2-0.100.10.2].

For given order k the uniform knot vectors generate periodic uniform basis
functions:

NE(@) = Nf (t—1) =NE, (t +1).

That is, each basis function is a parallel displacement of another function.



APPROXIMATION : B-SPLINES

Below are the basis functions of the periodic uniform B-spline with n+1=4, k=3,
and [X]=[0123456].
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The open-uniform knot vector has identical values at the ends is equal to the order

k of the basis function of the B-spline. Internal values have constant steps between
adjacent elements:

k=2[0 0 1 2 3 4 4]

k=3[0 0 0 1 2 3 3 3]

k=40 0 0 0 1 2 2 2 2]
The formal definition of the open-uniform knot vector is:

x; = 0; 1<i<k;

x; =1—k; k+1<i<n+1;

xi=n—-k+2;, n+2<i<n+k+1.
The resulting basis functions behave approximately the same as Bezier curves. In
fact, if the number of polygon vertices is equal to the order of the B-spline basis
and an open-uniform knot vector is used, the B-spline basis reduces to the
Bernstein basis. Hence, the B-spline is a Bezier curve. In this case, the node vector
is simply k zeros followed by k ones.



APPROXIMATION : B-SPLINES

Below are the basis functions of the open-uniform B-spline with n+1=4, k=3, and
[X]=[0001222].
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The non-uniform knot vectors have different steps between values and/or
overlaps. Vectors can be periodic or open, for example:

[00011222]0or[012234]0r[00.280.50.72 1]
Some examples of the basis functions of the non-uniform B-spline with n+1=5 and

k=3 are below.

/<3

[X]=[0001.82.23 3 3] [X]=[0 © © 2 2 3 3 3]
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The flexibility of the B-spline allows you to influence the shape of the curve in various ways:
changing the type of knot vector: periodic uniform, open uniform, and non-uniform;

changing the order of k basis functions;
changing the number and location of vertices of the defining polygon;

using repeated vertices;
using repeated values in knot vectors.

The figure shows three open B-splines of different
orders given by one set of four vertices. A fourth-
order curve is a Bezier. The third-order curve
consists of two parabolic segments that connect in
the center of the second segment with C!
continuity. The curve of the second order coincides
with the defining polygon. It consists of three
linear segments connecting at the second and third
vertices with continuity C°.






