ВИКОРИСТАННЯ ОСАДУ СТІЧНИХ ВОД ГАЛЬВАНАЧНОГО ВИРОБНИЦТВА В ТЕХНОЛОГІЇ СИЛІКАТНОЇ ЦЕГЛИ

Використання промислових відходів у будівельній індустрії є перспективним напрямком зниження собівартості продукції і зменшення негативного навантаження на навколишнє середовище. За результатами будівельно-технічних (досліджувались міцність при стиску і вигині, водопоглинання, водостійкість, морозостійкість, середня густина і міцність зчеплення з розчином) і санітарно-хімічних (досліджувались хімічний склад і кількісні рівні міграції хімічних сполук у водні середовище і середовище, що імітує кислотні доші) випробувань показано, що силікатна цегла з добавками осаду гальваностокків в кількості до 2% відповідає будівельно-технічним і гігієнічним вимогам і може бути рекомендована до застосування за призначенням. Запропоновано рекомендації щодо доповнення технологічного регламенту виробництва силікатної цегли з добавками осаду.

Ключові слова: осад стічних вод; утилізація; силікатна цегла; будівельно-технічні; санітарно-хімічні дослідження

Постановка проблеми. Внаслідок того, що будівництво спеціальних полігонів і знищення токсичних промислових відходів, які містять важкі метали, вимагає значних витрат, їх звичайно звозять у відвали, що є неприпустимим за дією санітарними наукою і приводить до погіршення екологічної обстановки. Одним з перспективних напрямків захоронення токсичних промислових відходів є виключення їх у вигляді добавок до складу будівельних матеріалів.

Аналіз основних досліджень та публікацій. Використання промислових відходів при виробництві будівельних матеріалів було предметом ряду робіт, результати яких представлені, наприклад, в [1, 2]. Значний досвід досліджень з утилізації осадів гальванічних стічних вод при виробництві будівельних матеріалів накопичено на кафедрі фізики КНУБА [3-5].

Формулювання мети статті. Розроблення і вибір оптимальних способів утилізації осаду гальваностокків при виробництві силікатної цегли.

Основна частина. Досліджений осад є кінцевим продуктом реагентної обробки стічних вод гальванічного виробництва. Він утворюється в результаті очищення промисової води, в процесі чого здійснюється відновлення хрому-VI іонами заліза до хрому-III і перехід важких металів у важкорозчинні гідроксиди.

Отримані дані за хімічним складом і дисперсією осаду вказують на те, що його утилізація може бути, очевидно, здійснено при додаванні в будівельні матеріали, речовин, які містять гідрауклічні в'яжучі. При цьому попередні дослідження показали, що в бетонній суміші осад поводиться як інертна добавка, яка призводить до зниження показників міцності бетону і тому спосіб утилізації осаду за рахунок введення його в якості добавки в бетон не може бути рекомендованим до застосування.

Зразки силікатної цегли виготовлялися з сировинних матеріалів, які відповідають вимогам діючих стандартів. Співвідношення валун-пісок у в'яжучому складало 45-55%. Осад вводився в силікатну суміш у кількості 1...20% від маси суміші. Готовулися суміші двох типів. В одному випадку осадом заміщалася частина піскового наповнювача, в інших — частина в'яжучого.

Отримані зразки досліджувалися на міцність при стиску та вигині, морозостійкість, водостійкість, водопоглинання. Визначалася також середня густина і міцність зчеплення з розчином. Результати вимірювань наведені в табл. 1 і 2.
Нижче наводиться аналіз фізико-технічних властивостей зразків і їх відповідність нормативно-технічній документації на силикатну цеглу.

Таблиця 1

<table>
<thead>
<tr>
<th>Склад силикатної суміші, %</th>
<th>Межа міцності цегли, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>в'яжуче піскок добавка сирець при стиску при вигині середній мінім. середній мінім.</td>
<td></td>
</tr>
<tr>
<td>25 75 - 0,6 23,4 23,0 3,3 3,0</td>
<td></td>
</tr>
<tr>
<td>25 74 1 0,4 17,5 17,0 2,8 2,7</td>
<td></td>
</tr>
<tr>
<td>25 73 2 0,4 14,8 14,2 2,5 2,3</td>
<td></td>
</tr>
<tr>
<td>25 70 5 0,3 9,5 9,0 2,0 1,8</td>
<td></td>
</tr>
<tr>
<td>25 65 10 0,3 7,1 7,0 - -</td>
<td></td>
</tr>
<tr>
<td>25 55 20 0,3 6,0 6,0 - -</td>
<td></td>
</tr>
<tr>
<td>24 75 1 0,6 21,5 20,5 3,2 3,1</td>
<td></td>
</tr>
<tr>
<td>23 75 2 0,6 19,9 18,6 3,0 2,9</td>
<td></td>
</tr>
<tr>
<td>20 75 5 0,6 13,5 12,5 2,6 2,4</td>
<td></td>
</tr>
<tr>
<td>15 75 10 0,6 7,0 6,5 - -</td>
<td></td>
</tr>
<tr>
<td>5 75 20 0,5 0,6 0,4 - -</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 2

<table>
<thead>
<tr>
<th>Склад силикатної суміші, %</th>
<th>Межа міцності цегли, МПа</th>
<th>Середня густинна, кг/м³</th>
<th>Міцність зчеплення з розчином, МПа</th>
<th>Водопоглинання, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>в'яжуче піскок добавка водонасичена після випро вання на МРЗ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 75 - 20,1 18,0 1750 0,8 9,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 74 1 14,7 13,1 1730 0,9 8,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 73 2 12,0 10,7 1710 0,9 7,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 70 5 9,5 8,6 1730 0,6 9,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 65 10 8,0 7,4 1700 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 55 20 6,0 2,4 1740 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 75 1 18,0 19,1 1710 0,9 7,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 75 2 15,6 16,9 1680 0,9 7,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 75 5 10,2 9,2 1700 0,7 8,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 75 10 5,0 4,6 1710 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 75 20 - 0,6 1740 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Нижче наводиться аналіз фізико-технічних властивостей зразків і їх відповідність нормативно-технічній документації на силикатну цеглу.

Міцність при стиску і вигині. Відповідно до державного стандарту марка цегли визначається її міцністю при стиску, яка повинна знаходитися в межах 7,5...30 МПа. Кожній марці цегли повинна відповідати певна міцність при вигині в межах 1,6...4 МПа.За табл. 2 випливає, що додавання добавки в кількості 1...2% замість частини в'яжучого не знижує марки цегли. В інших випадках при вмісті добавки до 5% марка знижується, однак показники міцності залишаються в межах вимог державних стандартів.

Морозостійкість. Державний стандарт встановлює чотири марки цегли за морозостійкістю. Морозостійкість рядової цегли повинна становити не менше 15 циклів заморозування за температури -15°C і відтаювання у воді за температури 15...20°C, а лицьової цегли — 25, 35 і 50 циклів в залежності від кліматичного пояса, частин і категорії будівель, в яких її застосовують. Зниження міцності після випробування на морозостійкість порівняно з водонасиченими контрольними зразками не повинно перевищувати 20 % для лицьової і 25 % для рядової цегли.

За табл. 2, де наведено результати вимірювань міцності при стиску зразків після 25 циклів заморозування і відтаювання, випливає, що втрати міцності у всіх випадках, за винятком цегли з добавкою осаду 20%, не перевищують 15 %. Таким чином, силикатна цегла з добавками осаду в кількості до 10 %
силікатної маси є достатньо морозостійким матеріалом.

Водопоглинання. Відповідно до державного стандарту водопоглинання силікатної цегли повинно бути не менше 6%. Наші виміри показують, що всі випробувані зразки задовольняють цю вимогу.

Зчеплення з розчином. Відповідно до державного стандарту міцність зчеплення оздоблювального покриття з поверхнею силікатної цегли повинна бути не менше 0,6 МПа. З табл. 2 видно, що при вмісті осаду до 5% значення цієї характеристики є цілком задовільними.

Водостійкість. Цей показник обумовлюється коефіцієнтом розм'якшення силікатної цегли, який визначається як відношення його міцності при стиску після водонасичення до міцності в повітряно-сухому стані і повинен бути не менше 0,8. За нашими даними коефіцієнт розм'якшення в усіх випадках, за винятком зразків з добавками 10 і 20% осаду, замість частини в'язчого, перевищує вказане значення. Отже, введення осаду не знижує водостійкості силікатної цегли.

Міцність цегли-сирцю. Міцність сирцю має бути достатньою для стійкої роботи автоматів-укладальників. Вона залежить від виду цегли, її розмірів, кількості, розташування і величини порожнин та інших технологічних факторів. Мінімальна зміна інших міцність сирцю повинна знаходитися в межах 0,3...0,4 МПа. Як видно з табл. 2, міцність сирцю, виготовленого з сумішш, що містять осад, при будь-яких добавках осаду в межах 1...20% є не нижчою за наведені величини.

Підсумовуючи, можна зробити висновок, що дослідженні зразки з добавками осаду гальваностоків в кількості до 5% від маси силікатної суміші за всіма основними фізико-технічними параметрами задовольняють вимог нормативних документів, що ставляться до силікатної цегли. Причому найкращі технічні характеристики, як і слід було очікувати, мають зразки, в яких осад в кількості 1...2% заміщує частину в'язчого, а не піск-нафповідь.

Фактором, що в значній мірі визначає можливість утилізації осаду стічних вод при виробництві силікатної цегли, є її відповідність гігієнічним вимогам, які ставляться до неорганічних відходів і матеріалів з їх добавками. Проведені санітарно-хімічні дослідження показали таке.

1. Силікатна цегла з добавками осаду гальваностоків в кількості до двох відсотків за сухою масою не відрізняється за хімічним елементним складом від природних будівельних матеріалів і не містить в своєму складі потенційно небезпечних для організму навколишнього середовища елементів.

2. Кількісні рівні вмісту в складі силікатної цегли сполук біологічно активних елементів (хром-III, свінць, сура, нікель) не відрізняються від їх концентрацій в матеріалах, використовуваних в будівельній практиці (табл. 3).

| Таблиця 3 |
|---|---|---|
| Елементи | Вміст, ваг. % | Допустима норма |
| | силікатна цегла з добавками | допустимим відхиленням |
| хром-III | 0,060 | 0,080 | 0,005 |
| цінк | 0,008 | 0,010 | 0,003 |
| нікель | 0,002 | 0,003 | 0,001 |
| свінць | 0,0010 | 0,0010 | 0,0005 |
| сура | 0,0002 | 0,0010 | 0,0005 |
| ртуть, талій, берилій, селен, хром VI, миш'як | не виявлені | відсутність |
3. Силікатна цегла з добавками осаду є хімічно стабільним матеріалом. За даними ІЧ-спектральних і рентгеноструктурних досліджень встановлено, що до її складу входять важкозачіпні у воді гідроксиди і силікати. Це підтверджується результатами лабораторних досліджень, які свідчать про те, що матеріал виділяє в спонукаючі середовища слідові кількості катіонів біологічно активних сполук (табл. 4).

4. Матеріал не містить в своєму складі будь-яких летучих компонентів (оксиди азоту та сірки, меркаптани, органічні сполук), які можуть становити потенційну небезпеку для організму і навколишнього середовища. Радіоактивність силікатної цегли не відрізняється від фонової (0,6 пк/кг).

У результаті проведених інтенсівних досліджень можна зробити висновок, що силікатна цегла з добавками осаду гальваностоків в кількості до 2% відповідає гіgienічним вимогам і може бути рекомендовано до застосування за призначенням.

Відповідно до описаних вище результатів досліджень для отримання силікатної цегли з оптимальними характеристиками осад слід додавати в силікатну суміш замість відповідної частини в'яжучого в процесі її приготування. За огляду на його високу вологості для найбільш ефективного помелу осаду рекомендується застосовувати бігуни мокрого помелу, використовувані зазвичай при виробництві керамічної цегли для помелу глини. За відсутності зазначеного обладнання помел осаду може здійснюватися і в трубному млині, що застосовується на силікатних заводах для спільного помелу вапна і піску.

Після дозування осаду з тим же ступенем точності, як в'яжуче і піск, його необхідно змішувати з ними в двохвальному багатоборотному лопатевому змішувачі. При цьому вносити зміни в кількість води, яка використовується для зволоження маси, немає необхідності, оскільки при вмісті осаду 1..2% вологость силікатної маси при завантаженні в силос змінюється в допустимих межах 0,5%.

Таким чином, при додаванні осаду в силікатну суміш до технологічного регламенту силікатного заводу повинні бути додані такі технологічні зміни: помел осаду, дозування в'яжучого, піску і осаду. Необхідні додаткове устанмання: бункер осаду, стрічковий живильник осаду, бігуни мокрого помелу або трубний млин, шнековий живильник осаду.

Висновки. За результатами проведених досліджень виявлено, що силікатна цегла з добавками осаду гальваностоків в кількості до 2% відповідає будівельно-технічним та гіgienічним вимогам і може бути рекомендовано до застосування за призначенням. Запропоновано рекомендації щодо доповнення технологічного регламенту виробництва силікатної цегли з добавками осаду.

Таблиця 4

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Рівні, мг/л</th>
<th>ГДК, мг/л</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>водні середовище</td>
<td>кислотні середовище</td>
</tr>
<tr>
<td>запів</td>
<td>0,02</td>
<td>0,100</td>
</tr>
<tr>
<td>хром-III</td>
<td>0,03</td>
<td>0,005</td>
</tr>
<tr>
<td>цинк</td>
<td>0,02</td>
<td>0,012</td>
</tr>
<tr>
<td>мідь</td>
<td>0,11</td>
<td>0,003</td>
</tr>
<tr>
<td>нікель</td>
<td></td>
<td>не виявлені</td>
</tr>
<tr>
<td>сульфур</td>
<td></td>
<td></td>
</tr>
<tr>
<td>свинець</td>
<td></td>
<td></td>
</tr>
<tr>
<td>лужні</td>
<td>7,5</td>
<td>13,8</td>
</tr>
<tr>
<td>лужно-земельні</td>
<td>6,0</td>
<td>9,5</td>
</tr>
</tbody>
</table>

* - середовище, яке імітує кислотні дощі (pH = 5,5) при 25...30°C
REFERENCES:
3. Sydorov V. M. & other (1990). Concrete with the addition of a sediment of galvanic drains. Advanced scientific and production experience recommended for the implementation of the construction of agro-industrial complex facilities, issue. 5. 21 – 25 [in Russian]